	The rand	om variable Y I	nas the probabil	ity distributior	n shown. Probler	ns 1-2 refer to	Υ.
		<u>Y = k</u>	-1	0	1		
		Pr(Y = k)	.1	.3	.6		
1.	. What is the expected value of Y?						
a)	0	b) .3	c) .5		d) 1	e) .25	
2.	. Find the probability distribution of Y^2 .						
a)	$\frac{Y^2}{Pr(Y^2 = k)}$	0.09.37	<u>1</u> 0				
b)	$\underline{Y}^2 = k$	0	1				
	$\Pr(Y^2 = k)$.3	.7				
c)	$\underline{Y}^2 = k$	-1	0	1			
	$Pr(Y^2 = k)$.01	.09	.36			
d)	$Y^2 = k$	0	1	2			
ŗ	$Pr(Y^2 = k)$.4	.9	.6			
e)	$\underline{Y}^2 = k$	0	1				
	$Pr(Y^2 = k)$.5	.5				
3.	The random variable Z has the probability distribution shown						
			k	0	2	4	
		Pr (Z =	k)	23	। ह	। ह	
	What is the variance, σ^2 , of Z? Hint: The expected value of Z is 1.						
	a) 0		b) 1	c) $\frac{3}{5}$		d) 3	e) 🔓
4.	Suppose random v	the variance of variable?	a random varial	ble is .25. Wha	at is the standarc	l deviation of thi	S

a) .0625 b) .5 c) .75 d) .9375 e) not enough information

- 5. An experiment consists of rolling a six sided die either 3 times or until a toss shows a "one", whichever comes first. Let X count the number of rolls in a trial. What is the expected value of the random variable X?
- a) $1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{4}{6}$ b) $1 \cdot \frac{1}{6} + 2 \cdot \frac{5}{36} + 3 \cdot \frac{25}{36}$
- c) $1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6}$ d) $5 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 1 \cdot \frac{4}{6}$
- e) $1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{36} + 3 \cdot \frac{29}{36}$
- 6. An experiment consists of flipping a coin 8 times and counting the number of heads. What is the probability of getting either 3 or 4 heads?
- a) $\binom{8}{3} + \binom{8}{4}$ b) $\binom{8}{3} \binom{8}{4} \binom{1}{2}^{3} \binom{1}{2}^{5}$
- c) $\binom{8}{3} \cdot \binom{1}{2}^3 + \binom{8}{4} \binom{1}{2}^4$

e)
$$\binom{8}{3}$$
 $\binom{1}{2}^{3}$ $\binom{1}{2}^{5}$ + $\binom{8}{4}$ $\binom{1}{2}^{4}$ $\binom{1}{2}^{4}$

Problems 7 - 8 refer to the following:

A famous basketball player decides to switch careers and take up baseball. Each time at bat the probability of him getting a hit is .195. An experiment consists of counting the number of hits he gets in 20 times at bat.

d) $\begin{pmatrix} 8 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 8 \end{pmatrix} + \begin{pmatrix} 8 \\ 4 \end{pmatrix} \begin{pmatrix} 1 \\ 8 \end{pmatrix}$

- 7. What is the variance of this experiment?
- a) 20(.195) b) 20(.805) c) 20(.195)(.805)
- d) (.195)²⁰ e) .195
- 8. What is the expected number of hits?
- a) 20(.195) b) 20(.805) c) 20(.195)(.805)
- d) (.195)²⁰ e) .195

- 9. Suppose that the life span of the Madagascar hissing cockroach is normally distributed with $\mu = 3$ years and $\sigma = 2$. What is the probability of a Madagascar hissing cockroach having a life span of 4 or more years?
- a) .3085 b) .7088 c) .1587 d) .5199 e) .9938
- 10. Find the area of the shaded region under the given normal curve where μ = 30, and σ = 4.

a) .6915 b) .5000 c. .9772 d. .3085 e. .0228

11. Suppose that in a particular town people are asked to pick their favorite animal. 45% pick dogs, 40% pick cats, 15% pick Madagascar hissing cockroaches. What is the probability that exactly 3 out of 5 randomly chosen people from this town picked cats as their favorite animal?

a)
$$(.4)^4 (.6)^5$$
 b) $\binom{5}{3} (.4)^3$ c) $\binom{5}{3} (.4)^3 (.6)^2$ d) $\binom{5}{3} \binom{1}{2}^5$
e) $\binom{5}{3}$

Problems 12 - 14 refer to the following 2 matrices.
Let
$$M = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$$
, $N = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$.
12 Find $M \cdot N$.
a) $\begin{bmatrix} 7 & 1 \\ 3 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 3 \\ -4 & 2 \end{bmatrix}$ d) [12] e) $\begin{bmatrix} 4 & 1 \\ 8 & 7 \end{bmatrix}$

- 13. Find M + N.a) [12]b) $\begin{bmatrix} 7 & 3 \\ 1 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 4 & 3 \\ 2 & 3 \end{bmatrix}$ d) $\begin{bmatrix} 7 \\ 1 \end{bmatrix}$ e) [4 2]
- 14. Find the first row of M⁻¹. Hint: If A = $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then A⁻¹ = $\begin{bmatrix} d/\Lambda & -b/\Lambda \\ -c/\Lambda & a/\Lambda \end{bmatrix}$ where $\Lambda = ad - bc$. a) $\begin{bmatrix} \frac{3}{2} & \frac{4}{2} \end{bmatrix}$ b) $\begin{bmatrix} \frac{3}{2} & 1 \end{bmatrix}$ c) [7] d) [1 -2] e) $\begin{bmatrix} -\frac{1}{2} & \frac{3}{2} \end{bmatrix}$

15. Suppose a and b satisfy the two equations 3a + 4b = 1 a + 2b = 2What is a + b? Hint: Find a and b then add then together. a) $-\frac{1}{2}$ b) 5 c) 2 d) $\frac{2}{3}$ e) $\frac{7}{2}$

- 16. Let X denote the normal random variable with μ = 8 and σ = 2. Find Pr (x ≤ 12).
 a) .0228 b) .2500 c) .7881 d) .9992 e) .9772
- 17. Let y denote the normal random variable with μ= 5 and σ = 2. Find
 Pr (6 ≤ y ≤ 7).
 a) .8502
 b) .8502
 c) .1359
 d) .8641
 e) .1498
- 18. Which one of the following systems is equivalent to the system

$$\begin{cases} x + 2y + 5z = 7 \\ y + 3z = 9 \end{cases}$$

- a) $\begin{cases} x + 2z = 12 \\ y + 3z = 9 \end{cases}$ b) $\begin{cases} x + -z = -11 \\ y + z = 9 \end{cases}$ c) $\begin{cases} x + 5z = 7 \\ y + 3z = 9 \end{cases}$
- d) $\begin{cases} x & -z = -11 \\ y + 3z = 9 \end{cases}$ e) $\begin{cases} x = -11 \\ y = 9 \end{cases}$

19. Let M =
$$\begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$$
, N = $\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$. Find M · N.
a) $\begin{bmatrix} 28 \end{bmatrix}$ b) $\begin{bmatrix} 12 & 15 & 18 \\ 8 & 10 & 12 \\ 4 & 5 & 6 \end{bmatrix}$ c) $\begin{bmatrix} 12 \\ 10 \\ 6 \end{bmatrix}$ d) $\begin{bmatrix} 12 & 10 & 6 \end{bmatrix}$

e) they can't be multiplied.

- 20. Use the normal approximation to the binomial distribution to estimate the probability of getting exactly 50 heads in 100 flips of a coin.
- a) .5000 b) .8413 c) .0796 d) .5398 e) .3085