Formulas:

Compound Interest.

Compound amount	$F = (1 + i)^n P$		
present value	$P = \frac{1}{(1+i)^n} F$		

Simple Interest

amount A = (1 + n r) P

annuity

$$F = s_{n|i} R$$
 , $R = \frac{1}{s_{n|i}} F$
 $P = a_{n|i} R$, $R = \frac{1}{a_{n|i}} P$

Problems (1), (2), and (3) refer to the following matrices: $A = \begin{pmatrix} .4 & .5 & 0 \\ 0 & .4 & 1 \\ .6 & .1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} .5 & 0 \\ .5 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & .8 & .2 & 0 \\ 0 & .1 & .8 & 1 \\ 0 & .1 & .8 & 1 \end{pmatrix}$

- $D = \begin{pmatrix} 0 & 0 & .2 & 0 \\ .8 & .2 & 0 & 0 \\ .1 & .8 & .8 & 0 \\ .1 & 0 & 0 & 1 \end{pmatrix} \qquad \qquad E = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- 1.a. A is absorbingb. E is absorbingc. C is absorbingd. B and D are absorbinge. none of them is absorbing
- 2.a. A is regularb. B is regularc. C is regulard. D is regulare. E is regular
- 3. The inverse matrix E^{-1} of E is
- a. $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ b. $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ c. $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ d. $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ e. $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

4. $E^2 - B =$ a. $\begin{pmatrix} -.5 & 0 \\ 0 & 0 \end{pmatrix}$ b. $\begin{pmatrix} .5 & 0 \\ -.5 & 0 \end{pmatrix}$ c. $\begin{pmatrix} .5 & 1 \\ .5 & 0 \end{pmatrix}$ d. $\begin{pmatrix} .5 & -1 \\ -.5 & 0 \end{pmatrix}$ e. $\begin{pmatrix} .5 & 0 \\ 0 & -.5 \end{pmatrix}$

5. The stable matrix of A =
$$\begin{pmatrix} 1 & 0 & 0 & .2 \\ 0 & 1 & 0 & .2 \\ 0 & 0 & 1 & .4 \\ 0 & 0 & 0 & .2 \end{pmatrix}$$
 is
a. $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ b. $\begin{pmatrix} .2 & .2 & .2 & .2 \\ .2 & .2 & .2 & .2 \\ .4 & .4 & .4 & .4 \\ .2 & .2 & .2 & .2 \end{pmatrix}$ c. $\begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{-4} \\ 0 & 0 & 0 & 0 \end{pmatrix}$
d. $\begin{pmatrix} 1 & 0 & 0 & .5 \\ 0 & 0 & 1 & .25 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ e. $\begin{pmatrix} 1 & 0 & 0 & \frac{1}{4} \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 0 \end{pmatrix}$

6. Let
$$A = \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$$
 then the stable matrix is
a. $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ b. $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ c. $\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
d. $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ e. $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

7. The stable distribution of the regular stochastic matrix $A = \begin{pmatrix} \cdot 4 & \cdot 3 \\ \cdot 6 & \cdot 7 \end{pmatrix}$ is a. $\begin{pmatrix} \cdot 4 \\ \cdot 6 \end{pmatrix}$ b. $\begin{pmatrix} \cdot 3 \\ \cdot 7 \end{pmatrix}$ c. $\begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \end{pmatrix}$ d. $\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ e. $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 8. A car rental agency has outlets in 3 cities. If a car is rented in city 1, there is a 70% chance that it will be returned to city 1 and a 20% chance that it will be returned to city 2. If a car is rented in city 2, there is a 50% chance that it will be returned to city 2 and a 30% chance that it will be returned to city 3. If a car is rented in city 3, there is a 40% chance that it will be returned to city 3 and a 20% chance that it will be returned to city 1. What is the stable distribution of this car rental agency?

a.
$$\begin{pmatrix} 15\\ 45\\ 15\\ 45\\ 15\\ 45\\ 15\\ 45 \end{pmatrix}$$
 b. $\begin{pmatrix} 18\\ 45\\ 16\\ 45\\ 11\\ 45 \end{pmatrix}$ c. $\begin{pmatrix} 20\\ 45\\ 8\\ 45\\ 17\\ 45 \end{pmatrix}$
d. $\begin{pmatrix} 40\\ 45\\ 2\\ 45\\ 3\\ 45\\ 3\\ 45 \end{pmatrix}$ e. $\begin{pmatrix} 1\\ 45\\ 23\\ 45\\ 21\\ 45 \end{pmatrix}$

- A savings account pays 8% annual interest compounded quarterly. How much should you deposit in the account now so that you will have \$10,000 in the account after 4 years.
- a. \$5,3650.13 b. \$7,365.01 c. \$1,413.26
- d. \$8,528.21 e. \$7,284.46

- 10. How much should you deposit now into an account paying 12% annual interest compounded monthly so that you can withdraw \$100 at the end of each month from the account for 4 years?
- a. \$3,901.26 b. \$4,520.25 c. \$4,8000.01
- d. \$3,797.40 e. \$2,633.34

- 11. $1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + 2^9 = ?$
- a. 2^{10} b. $2^{10} 1$ c. $2^{10} + 1$ d. 2^{11} e. $2^{11} 1$
- 12. Consider the following saving accounts passbook:

Date	Deposit	Interest	Balance
Jan 1, 1994\$5,00	00		\$5,000
July 1, 1994		\$50.00	\$5,050
Jan 1, 1995		\$50.50	\$5,100.50

What is the annual interest rate of this account?

a. 1 %	b. 1%	c. 2%	d. 3%	e. 4%
-------------------	-------	-------	-------	-------

- 13. Joan deposits \$10,000 in an account paying 6% annual interest compounded monthly. How much can she withdraw from the account each month for 5 years?
- a. \$207.58 b. \$193.33 c. \$156.66
- d. \$171.68 e. \$222.44

- 14. Tom made a deposit into an account paying 8% annual interest compounded quarterly. At the end of 9 years, the account is worth \$100,000. How much of the \$100,000 would be interest?
- a. \$39,232.85 b. \$19,232.85 c. \$33,333.33
- d. \$60,135.25 e. \$50,977.68

- 15. Bill deposits \$1000 each quarter into an account paying 6% annual rate compounded quarterly. How much interest will Bill have earned at the end of 5 years?
- a. \$5,123.11 b. \$17,168.64 c. \$23,123.67
- d. \$3,123.67 e. \$1,716.86

- 16. How long would it take for an investment of \$500 to double at an annual rate of 5% simple interest?
- a. 1 year b. 5 years c. 10 years
- d. 20 years e. 30 years

- 17. How much should you deposit each month into an account paying 9% annual interest compounded monthly so that you will have \$150,000 at the end of ten years?
- a. \$918.68 b. \$775.14 c. \$859.40
- d. \$10,351.40 e. \$655.34