Formulas:

Compound Interest.

$$
\begin{array}{ll}
\text { Compound amount } & F=(1+i)^{n} P \\
\text { present value } & P=\frac{1}{(1+i)^{n}} \quad F
\end{array}
$$

Simple Interest

$$
\text { amount } \quad A=(1+n r) P
$$

annuity

$$
\begin{array}{lll}
F=s_{n j i} R & , & R=\frac{1}{s_{n} i} F \\
P=a_{n j i} R & , & R=\frac{1}{a_{n} i} P
\end{array}
$$

Problems (1), (2), and (3) refer to the following matrices:
$\mathrm{A}=\left(\begin{array}{lll}.4 & .5 & 0 \\ 0 & .4 & 1 \\ .6 & .1 & 0\end{array}\right)$
$B=\left(\begin{array}{ll}.5 & 0 \\ .5 & 1\end{array}\right)$
$C=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & .8 & .2 & 0 \\ 0 & .1 & .8 & 1 \\ 0 & .1 & 0 & 0\end{array}\right)$
$\mathrm{D}=\left(\begin{array}{cccc}0 & 0 & .2 & 0 \\ .8 & .2 & 0 & 0 \\ .1 & .8 & .8 & 0 \\ .1 & 0 & 0 & 1\end{array}\right)$
$E=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
1.
a. A is absorbing
b. E is absorbing
c. C is absorbing
d. B and D are absorbing
e. none of them is absorbing
2.
a. A is regular
b. B is regular
c. C is regular
d. D is regular
e. E is regular
3. The inverse matrix E^{-1} of E is
a. $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
b. $\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$
c. $\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)$
d. $\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$
e. $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
4. $\mathrm{E}^{2}-\mathrm{B}=$
a. $\left(\begin{array}{cc}-.5 & 0 \\ 0 & 0\end{array}\right)$
b. $\left(\begin{array}{rr}.5 & 0 \\ -.5 & 0\end{array}\right)$
c. $\left(\begin{array}{ll}.5 & 1 \\ . & 0\end{array}\right)$
d. $\left(\begin{array}{rr}.5 & -1 \\ -.5 & 0\end{array}\right)$
e. $\left(\begin{array}{rr}.5 & 0 \\ 0 & -.5\end{array}\right)$
5. The stable matrix of $A=\left(\begin{array}{llll}1 & 0 & 0 & .2 \\ 0 & 1 & .2 \\ 0 & 0 & .2 \\ 0 & 0 & .4 \\ 0 & 0 & .2\end{array}\right)$ is
a. $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
b. $\left(\begin{array}{cccc}.2 & .2 & .2 & .2 \\ .2 & .2 & .2 & .2 \\ .4 & .4 & .4 & .4 \\ .2 & .2 & 2 . & 2\end{array}\right)$
c. $\left(\begin{array}{cccc}1 & 0 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{-4} \\ 0 & 0 & 0 & 0\end{array}\right)$
d. $\left(\begin{array}{cccc}1 & 0 & 0 & .5 \\ 0 & 1 & 0 & .5 \\ 0 & 0 & 1 & .25 \\ 0 & 0 & 0 & 0\end{array}\right)$
e. $\left(\begin{array}{llll}1 & 0 & 0 & \frac{1}{4} \\ 0 & 1 & 0 & \frac{1}{4} \\ 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 0\end{array}\right)$
6. Let $A=\left(\begin{array}{llll}1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2}\end{array}\right)$ then the stable matrix is
a. $\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
b. $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
c. $\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
d. $\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
e. $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$
7. The stable distribution of the regular stochastic matrix $A=\left(\begin{array}{ll}.4 & .3 \\ .6 & .7\end{array}\right)$ is
a. $\binom{.4}{.6}$
b. $(.3)$
c. $\binom{\frac{1}{3}}{\frac{2}{3}}$
d. $\binom{\frac{1}{2}}{\frac{1}{2}}$
e.
$\binom{1}{0}$
8. A car rental agency has outlets in 3 cities. If a car is rented in city 1 , there is a 70% chance that it will be returned to city 1 and a 20% chance that it will be returned to city 2 . If a car is rented in city 2 , there is a 50% chance that it will be returned to city 2 and a 30% chance that it will be returned to city 3 . If a car is rented in city 3 , there is a 40% chance that it will be returned to city 3 and a 20% chance that it will be returned to city 1 . What is the stable distribution of this car rental agency?
a. $\left(\begin{array}{l}\frac{15}{45} \\ \frac{15}{45} \\ \frac{15}{45}\end{array}\right)$
b. $\left(\begin{array}{l}\frac{18}{45} \\ 16 \\ 45 \\ \frac{11}{45}\end{array}\right)$
c. $\left(\begin{array}{c}\frac{20}{45} \\ \frac{8}{45} \\ \frac{17}{45}\end{array}\right)$
d. $\left(\begin{array}{c}\frac{40}{45} \\ \frac{2}{45} \\ 3 \\ \frac{45}{4}\end{array}\right)$
e. $\left(\begin{array}{l}\frac{1}{45} \\ \frac{23}{45} \\ \frac{21}{45}\end{array}\right)$
9. A savings account pays 8% annual interest compounded quarterly. How much should you deposit in the account now so that you will have $\$ 10,000$ in the account after 4 years.
a. $\$ 5,3650.13$
b. $\$ 7,365.01$
c. $\$ 1,413.26$
d. $\$ 8,528.21$
e. $\$ 7,284.46$
10. How much should you deposit now into an account paying 12% annual interest compounded monthly so that you can withdraw $\$ 100$ at the end of each month from the account for 4 years?
a. $\$ 3,901.26$
b. $\$ 4,520.25$
c. $\$ 4,8000.01$
d. $\$ 3,797.40$
e. $\$ 2,633.34$
11. $1+2+2^{2}+2^{3}+2^{4}+2^{5}+2^{6}+2^{7}+2^{8}+2^{9}=$?
a. 2^{10}
b. $2^{10}-1$
c. $2^{10}+1$
d. 2^{11}
e. $2^{11}-1$
12. Consider the following saving accounts passbook:

Date	Deposit	Interest
Jan 1, 1994 $\$ 5,000$		Balance
July 1, 1994	$\$ 50.00$	$\$ 5,000$
Jan 1, 1995	$\$ 50.50$	$\$ 5,050$

What is the annual interest rate of this account?
a. $\frac{1}{2} \%$
b. 1%
c. 2%
d. 3%
e. 4%
13. Joan deposits $\$ 10,000$ in an account paying 6% annual interest compounded monthly. How much can she withdraw from the account each month for 5 years?
a. $\$ 207.58$
b. $\$ 193.33$
c. $\$ 156.66$
d. $\$ 171.68$
e. $\$ 222.44$
14. Tom made a deposit into an account paying 8% annual interest compounded quarterly. At the end of 9 years, the account is worth $\$ 100,000$. How much of the $\$ 100,000$ would be interest?
a. $\$ 39,232.85$
b. $\$ 19,232.85$
c. $\$ 33,333.33$
d. $\$ 60,135.25$
e. $\$ 50,977.68$
15. Bill deposits $\$ 1000$ each quarter into an account paying 6% annual rate compounded quarterly. How much interest will Bill have earned at the end of 5 years?
a. $\$ 5,123.11$
b. $\$ 17,168.64$
c. $\$ 23,123.67$
d. $\$ 3,123.67$
e. $\$ 1,716.86$
16. How long would it take for an investment of $\$ 500$ to double at an annual rate of 5% simple interest?
a. 1 year
b. 5 years
c. 10 years
d. 20 years
e. 30 years
17. How much should you deposit each month into an account paying 9% annual interest compounded monthly so that you will have $\$ 150,000$ at the end of ten years?
a. $\$ 918.68$
b. $\$ 775.14$
c. $\$ 859.40$
d. $\$ 10,351.40$
e. $\$ 655.34$

