1. In a 10-team soccer conference, each team plays every other team exactly once. How many games must be played?
a. 45
b. 90
c. 99 d. 100
e. 10 !
2. A class of 100 students is split into 3 groups: group 1 is to have 20 students, group 2 is to have 30 students and group 3 is to have 50 students. How many ways are there to do this?
a. $\binom{100}{20}\binom{80}{30}$
b. $\binom{100}{20}\binom{100}{30}\binom{100}{50}$
c. $\binom{100}{20}+\binom{100}{30}+\binom{100}{50}$
d. $20 \cdot 30 \cdot 50$
e. $20+30+50$
3. At Smith College, 260 mathematics majors are surveyed about 3 courses: finite math (F), Calculus (C), and Algebra (A). It is found that 52 students take all 3 courses and that 100 take A, 200 take C, 165 take F, 57 take A and C, 125 take C and F, 82 take A and F. How many students take none of the 3 courses?
a. 5
b. 7
c. 10
d. 13
e. 25
4. A fast food place offers a pancake combo, consisting of a basic pancake with a choice of up to 3 extras from a list of 8 . How many different pancake combos are possible?
a. 56
b. 93
c. 100
d. 336
e. 256
5. How many 5 -digit numbers can be made with the digits 1 through 8 if no digit is repeated?
a. 8^{5}
b. $5!3!$
c. 8 !
d. $\frac{8!}{3!}$
e. 2^{5}
6. An urn contains 8 green balls and 6 red balls. Five balls are selected at random. Find the probability that exactly 3 of the balls are red.
$\binom{6}{3}$
b. $1-\frac{\binom{6}{3}}{\binom{14}{5}}$
c. $\frac{\binom{6}{3}\binom{8}{2}}{\binom{14}{5}}$
d. $1-\frac{\binom{8}{2}}{\binom{14}{5}}$
e. $\frac{\binom{6}{3}}{\binom{14}{5}}+\frac{\binom{8}{2}}{\binom{14}{5}}$
7. Suppose that, in a certain experiment, the events E and F are independent. If $\operatorname{Pr}(E)=\operatorname{Pr}(F)=\frac{1}{2}$, what is $\operatorname{Pr}(E \cup F)$?
a. $\frac{2}{3}$
b. $\frac{3}{4}$
c. 1
d. $\frac{7}{8}$
e. not enough information
8. A study finds that 20% of all inhabitants of the western part of Scotland suffer from heart disease, but only 10% of the inhabitants of the eastern part of Scotland do. 30% of the people of Scotland live in the western part, and 70% live in the eastern part. Suppose a Scottish citizen is chosen at random and is found to have heart disease. What is the probability that he/she comes from the western part of Scotland?
a. $\frac{2}{3}$
b. $\frac{3}{10}$
c. $\frac{6}{13}$
d. $\frac{6}{70}$
e. $\frac{6}{7}$
9. Two cards are drawn from a standard deck of 52 cards. What is the probability that the first card is an ace and the second is a King if the first card is replaced before the second is drawn?
a. $\frac{4}{52}+\frac{3}{52}$
b. $\frac{4}{52}+\frac{3}{5 T}$ $\left(\frac{4}{52}\right)^{2}$
d. $\left(\frac{4}{52}\right)\left(\frac{5}{51}\right)$
e. $\left(\frac{4}{52}\right)\left(\frac{3}{5 T}\right)$
c.
10. Suppose that E and F are events in an experiment, and $\operatorname{Pr}(E)=\frac{1}{4}, \operatorname{Pr}(F)=$ $\frac{1}{2}, \operatorname{Pr}(E \cup F)=\frac{3}{4}$. What is $\operatorname{Pr}(E I F)$?
a. 1
b. $\frac{1}{2}$
c. $\frac{1}{4}$
d. 0
e. $\frac{1}{3}$
11. An urn contains 5 red balls and 5 white balls. 3 balls are drawn from the urn at random, one at a time and without replacement. What is the probability that the first ball drawn is red and the second and third are white?
a. $\frac{1}{9}$
b. $\frac{1}{8}$
c. $\frac{5}{12}$
d. $\frac{2}{25}$
e. $\frac{5}{36}$
12. A pair of fair dice is rolled 3 times. Find the probability that the dice add up to 7 each time.
a. $\frac{1}{12}$
b. $\frac{1}{6}$
c. $\left(\frac{1}{12}\right)$
d. $\left(\frac{1}{6}\right)^{3}$
e. $\frac{1}{2}$
13. In a certain factory, an old machine produces bolts of which 10% are defective. What is the probability that, in a random sample of 80 bolts produced by the machine, at least 3 are defective?
a. $1-(.9)^{80}-\binom{80}{1}(.1)(.9)^{79}-\binom{80}{2}(.1)^{2}(.9)^{78}$
b. $1-(.9)^{80}-(.1)(.9)^{79}-(.1)^{2}(.9)^{78}$
c. $\binom{80}{3}(.1)^{3}(.9)^{77}$
d. $(.1)^{3}(.9)^{77}$
e. $(.9)^{80}+\binom{80}{1}(.1)(.9)^{79}+\binom{80}{2}(.1)^{2}(.9)^{78}+\binom{80}{3}(.1)^{3}(.9)^{77}$
14. The weight of a certain type of car (when it leaves the factory) is normally distributed with mean 998 kg and standard deviation .8 kg . Find the probability that a new car of this type chosen at random weighs between 997 kg and 999 kg .
a. 8944
b. . 7698
c. .7888
d. .9876
e. . 9938
15. Five fair coins are tossed simultaneously and the number X of heads is observed. What is the variance of the random variable X ?
a. $\sqrt{\frac{5}{4}}$
b. $\frac{5}{2}$
c. $\frac{5}{4}$
d. $\frac{55}{25}-\frac{4}{25}$
e. 1
16. The probability that a certain surgical operation is successful is 0.8 (it is a binomial distribution). If the operation is performed on 100 people, find the probability that 70 or more operations are successful (use normal distribution to approximate the binomial distribution):
a. . 9938
b. . 0062
c. . 5
d. 8944
e. . 1056
17. A bag contains three $\$ 1$ bills, two $\$ 5$ bills, and one $\$ 10$ bill. One bill is selected at random. If X denotes the denomination of the selected bill, find the expected value $E(X)$.
a. $\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$
b. $\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{6}$
c. $\left(\frac{1}{2}\right)^{3}\left(\frac{1}{3}\right)^{2}\left(\frac{1}{6}\right)$
d. $\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{6}\right)$
e. $1 \cdot \frac{1}{2}+5 \cdot \frac{1}{3}+10 \cdot \frac{1}{6}$
18. A random variable X has the following probability distribution:

k	$\operatorname{Pr}(\mathrm{X}=\mathrm{k})$
-10	$1 / 3$
0	$1 / 3$
1	$1 / 6$
2	$1 / 6$

What is the expected value $\mathrm{E}(\mathrm{X})$?
a. $-\frac{13}{4}$
b. $-\frac{7}{4}$
c. $-\frac{17}{6}$
d. $\frac{1}{4}$
e. $-\frac{7}{3}$
19. The stable matrix of the absorbing stochastic matrix $\left[\begin{array}{llll}1 & 0 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{4} & \frac{1}{2}\end{array}\right]$ is
a. $\left[\begin{array}{llll}1 & 0 & 1 & \frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
b. $\left[\begin{array}{llll}1 & 0 & \frac{1}{2} & 1 \\ 0 & 1 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
c. $\left[\begin{array}{llll}1 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
d. $\left[\begin{array}{llll}1 & 0 & \frac{1}{2} & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
e. $\left[\begin{array}{llll}1 & 0 & 0 & \frac{1}{2} \\ 0 & 1 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
20. The transition matrix of a Markov Process is given by the matrix $\left[\begin{array}{l}.7 \\ .3\end{array} .1\right]$. g . The stable distribution of this process is:
a. $\left[\begin{array}{l}\frac{1}{2} \\ \frac{1}{2}\end{array}\right]$
b. $\left[\begin{array}{l}1 \\ 3 \\ 2 \\ 3\end{array}\right]$
c. $\left[\begin{array}{l}\frac{2}{3} \\ \frac{1}{3}\end{array}\right]$
d. $\left[\begin{array}{l}2 \\ 5 \\ 3 \\ 5\end{array}\right]$ $\left[\begin{array}{l}\frac{1}{4} \\ 3 \\ \frac{3}{4}\end{array}\right]$
e.
21. The transition matrix of a Markov process is given by the matrix.

$$
\mathrm{A}=\left[\begin{array}{lll}
.1 & 0 & 0 \\
.2 & .5 & 0 \\
.7 & .5 & 1
\end{array}\right]
$$

The matrix A is
a. regular
b. absorbing
c. regular and absorbing
d. regular but not absorbing
e. neither regular nor absorbing
22. Calculate the amount at the end of 5 years if $\$ 2,000$ is invested at 5% simple interest.
a. 2,500
b. 2,250
c. 2,025
d. 2,750
e. 3,000
23. Let $A=\left[\begin{array}{lll}\frac{1}{2} & \frac{1}{2} \\ 1 & \frac{1}{2} & \frac{1}{2}\end{array}\right]$ be the transition matrix of a Markov Process. If the distribution of the current generation is $\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2}\end{array}\right]$. Then the distribution of the next generation is
a. $\left[\begin{array}{l}1 \\ 0\end{array}\right]$
b. $\left[\begin{array}{l}0 \\ 1\end{array}\right]$
c. $\left[\begin{array}{l}\frac{1}{2} \\ \frac{1}{2}\end{array}\right]$
d. $\left[\begin{array}{l}\frac{1}{4} \\ \frac{1}{4}\end{array}\right]$
e. $\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{8}\end{array}\right]$
24. Which of the payoff matrices
$A=\left[\begin{array}{rr}2 & -1 \\ 3 & 5\end{array}\right], \quad B=\left[\begin{array}{ll}6 & 1 \\ 2 & 3\end{array}\right], C=\left[\begin{array}{ll}3 & 2 \\ 6 & 1\end{array}\right], D=\left[\begin{array}{rr}5 & -1 \\ 3 & 2\end{array}\right]$
have saddle points?
a. only B
b. A, C and D but not B
c. only A
d. only A and D
e. all
25. Suppose that a game has payoff matrix $\left[\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right]$. What is the optimal strategy for Player R?
a. $\left[\begin{array}{ll}1 / 3 & 2 / 3\end{array}\right]$
b. $[1 / 21 / 2]$
c. $\left[\begin{array}{ll}1 & 0]\end{array}\right.$
d. $\left[\begin{array}{ll}0 & 1\end{array}\right]$
e. $\left[\begin{array}{ll}1 / 4 & 3 / 4\end{array}\right]$
26. Rick (R) and Catherine (C) are playing "two-finger morra", a game in which each player first makes a fist then, at the count of three, extends either 1 or 2 fingers (F). If the sum of the number of fingers is even, Rick gets that amount of money (either $\$ 2$ or $\$ 4$), and if the number is odd, Catherine gets $\$ 3$. The pay-off matrix of this game is given by
a.

1F

1 F 2
R
2 F 3
C
2F

3

4
c.

	1 F
1 F	4

R
2 F -3

C
2F
-3

2
b.

1F

1 F -4
R
$2 F 3$
d.
$\begin{array}{ll} & 1 \mathrm{~F} \\ 1 \mathrm{~F} & -3\end{array}$
R
2 F 2
-3
e.

C

	$1 F$	$2 F$
$1 F$	2	-3
$2 F$	-3	4

27. Ted needs $\$ 10,000$ four years from now. How much should he invest now (one lump sum) in a savings account paying 6% annual interest compounded monthly?
a. $\$ 7,870.99$
b. $\$ 1,633.39$
c. $\$ 2,488.51$
d. $\$ 2,633.39$
e. $\$ 8,356.45$
28. Mr. Rich takes out a 30 -year $\$ 300,000$ mortgage at 9% annual interest, compounded monthly, with payments made monthly. What is the unpaid balance at the end of twenty years?
a. $\$ 2413.87$
b. $\$ 190,555.72$
c. $\$ 109,444.28$
d. $\$ 100,000$
e. $\$ 290,000.15$
29. Sue needs $\$ 10,000$ four years from now in order to pay off a loan. How much must she save each quarter for the next four years if interest rates are 8% compounded quarterly?
a. $\$ 490.22$
b. $\$ 386.53$
c. $\$ 326.02$
d. $\$ 536.50$
e. \$192.32
30. Mr. Smart purchased a car for $\$ 1000$ down payment plus monthly payments of $\$ 300$ for 3 years, at the annual interest rate of 18% compounded monthly. What is the purchase price (present value) of the car?
a. $\$ 108,000$
b. $\$ 118,000$
c. $\$ 97,000$
d. $\$ 8298.21$
e. \$9298.21
