Formulas:

$$F = (1 + i)^n P F = s_{n,i} R$$
 $P = a_{n,i} R$

$$P = a_{ni} R$$

$$s_{n,i} = \frac{(1+i)^n - 1}{i}$$
 $a_{n,i} = \frac{(1+i)^n - 1}{i(1+i)^n}$

$$a_{n i} = \frac{(1 + i)^n - 1}{i(1 + i)^n}$$

If $A = \begin{bmatrix} I & S \\ 0 & R \end{bmatrix}$ is an absorbing stochastic matrix then the stable matrix of A is $\begin{bmatrix} I & S(I - R)^{-1} \\ 0 & 0 \end{bmatrix}$. [Note: The identity matrix I in $(I - R)^{-1}$ is chosen to be the same size as R in order to make the matrix subtraction permissible.]

- Consider the matrix $A = \begin{bmatrix} 0.2 & 0.2 & 0.5 \\ 0.3 & 0.3 & 0.3 \\ 0.1 & 0.5 & 0.2 \end{bmatrix}$. Which of the following statements about A is 1. true?

- a. A is stochastic.
 b. A is stochastic and regular.
 c. A is stochastic and absorbing.
 d. A is stochastic, regular but not absorbing.
 e. A is not stochastic.
- Consider the stochastic matrix A = $\begin{bmatrix} 1 & 0.2 \\ 0 & 0.8 \end{bmatrix}$. Then A is: 2.
- a. absorbing and regular
 b. absorbing but not regular
 c. regular but not absorbing
 d. stable but not absorbing

- e. neither absorbing nor regular
- Let A = $\begin{bmatrix} \frac{1}{3} & \frac{2}{3} & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} \\ 1 & 1 & 2 \end{bmatrix}$ be the transition matrix of a Markov process. If the distribution

matrix of the current generation is $\begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$. Then the distribution of the next generation

is:

b.
$$\begin{bmatrix} \frac{2}{9} \\ 4 \\ 9 \\ 4 \\ 9 \end{bmatrix}$$

c.
$$\begin{bmatrix} 3 \\ 9 \\ 2 \\ 9 \\ 4 \end{bmatrix}$$

c.
$$\begin{bmatrix} 3 \\ 9 \\ 2 \\ 9 \\ 4 \\ 9 \end{bmatrix}$$
 d.
$$\begin{bmatrix} 2 \\ 9 \\ 3 \\ 9 \\ 4 \\ 9 \end{bmatrix}$$

4. A Markov process with three states has transition matrix

	Current State		
		ll l	III
Next	0.2	0.3	0.4
State II	0.1	0.2	0
III	0.7	0.5	0.6

The probability of proceeding from (current) state III to (next) state I is:

- a. 0.2
- b. 0.3 c. 0.4
- d. 0.5
- e. 0.7
- The stable distribution $\begin{bmatrix} x \\ y \end{bmatrix}$ of the matrix A = $\begin{bmatrix} 0.5 & 0.6 \\ 0.5 & 0.4 \end{bmatrix}$ is: 5.
- $\begin{bmatrix} \frac{6}{11} \\ \frac{5}{5} \\ \end{bmatrix} \qquad \text{b.} \quad \begin{bmatrix} \frac{7}{11} \\ \frac{4}{11} \\ \end{bmatrix} \qquad \text{c.} \quad \begin{bmatrix} \frac{4}{9} \\ \frac{5}{5} \\ \end{bmatrix} \qquad \qquad \text{d.} \quad \begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix} \qquad \text{e.} \quad \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$

- The stable matrix of the transition matrix $A = \begin{bmatrix} 1 & 0 & 0.4 \\ 0 & 1 & 0.5 \\ 0 & 0 & 1 \end{bmatrix}$ is 6.
- a. $\begin{bmatrix} 1 & 0 & 0.36 \\ 0 & 1 & 0.45 \\ 0 & 0 & 0 \end{bmatrix}$

b. $\begin{bmatrix} 1 & 0 & \frac{4}{9} \\ 0 & 1 & \frac{5}{9} \\ 0 & 0 & 0 \end{bmatrix}$

c.

- $\begin{bmatrix} 0 & 0 & \frac{4}{9} \\ 0 & 0 & \frac{5}{9} \\ 0 & 0 & 0 \end{bmatrix}$

- e. $\begin{bmatrix} 1 & 0 & \frac{1}{10} \\ 0 & 1 & \frac{9}{10} \\ 0 & 0 & 0 \end{bmatrix}$
- 7. A professor's exams are either easy or hard. If the exam was easy last time, it will be easy this time with a 40% probability. If it was hard last time, it will be easy this time with a 70% probability. The matrix of this Markov process is given by:
- current easy hard easy [0.7 0.4] a. hard [0.3 0.6]
- easy hard easy hard b. hard [0.7 0.6] c. hard [0.4 0.7]

easy hard

- current easy hard
- e. easy [0.4 0.7] hard [0.6 0.3]

current

d. easy [0.4 0.3] d. hard [0.6 0.7]

2

8. Which of the matrices are regular:

$$A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$A_4 \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 1 \end{bmatrix}$$

- a. A₁
- b. A₂
- c. A₃

- d. A₄
- e. A₃ and A₄
- 9. How much money must be deposited now in order to have \$10,000 after 10 years if interest is paid at a 6% annual rate compounded monthly?
- a. \$928.92

- b. \$5,496.33
- c. \$3,029.95

d. \$7,413.72

- e. \$5,904.50
- 10. One thousand dollars is deposited in an account at 8% annual rate compounded quarterly for 2 years. The amount of interest earned during that time is
- a. \$60.30

b. \$90.49

c. \$171.66

d. \$214.98

- e. \$306.22
- 11. How much should Mary save each month to have \$20,000 for the down payment to buy a house in 5 years if annual interest rate is 6% compounded monthly?
- a. \$692.15

b. \$511.64

c. \$399.68

- d. \$286.66
- e. \$201.57
- 12. If the annual interest rate is 12% compounded daily, the rate per period i is:
- a. 1%
- b. $\frac{12}{365}$ %
- c. $\frac{1}{2}$ %
- d. 3% e. 12%
- 13. How much should Jim deposit in an account paying 12% annual rate compounded monthly so that his son can withdraw \$100 at the end of each month for 9 months?
- a. \$900.00

b. \$890.22

c. \$856.60

d. \$1072.36

- e. \$998.53
- 14. If you deposit \$10,000 into an account paying 8% annual interest compounded quarterly. How much can you withdraw at the end of each quarter year for 5 years so that balance is zero at the end of 5 years?
- a. \$611.57

b. \$6,115.67

c. \$523.72

d. \$5,237.23

e. \$557.66

15.	What is the monthly pacompounded monthly?	nyment on a 30 year \$100,000) mortgage at 12% annual rate
a. \$15	543.31	b. \$1507.08	c. \$1101.08

e. \$1,028.61

- 16. Dan took a loan to buy a car. If the interest rate is 18% compounded monthly and the monthly payment is \$200 for 4 years. What is the amount of the loan?
- a. \$6,808.51 b. \$7,808.51 c. \$5,532.14
- d. \$6,532.14 e. \$9,172.44
- 17. Janet took out a loan in the amount of \$600. If the annual interest rate is 18% compounded monthly. How much interest did Janet pay at the end of the first month?

c. \$1.08

d. \$90

e. \$9

- 18. Sam deposits \$1,000 per month for 3 years at 12% annual interest rate compounded monthly. How much will Sam have at the end of 3 years?
- a. \$39,336.10 b. \$43,076.88 c. \$36,000
- d. \$36,360 e. \$47,275.96

b. \$10.8

19. If $A = \begin{bmatrix} 0.4 & 1 \\ 0.6 & 0 \end{bmatrix}$ then $A^2 =$

d. \$1,053.22

a. \$108

- a. $\begin{bmatrix} 0.22 & 0.4 \\ 0 & 0.6 \end{bmatrix}$ b. $\begin{bmatrix} 0.16 & 1 \\ 0.36 & 0 \end{bmatrix}$ c. $\begin{bmatrix} 1.4 & 1 \\ 0.6 & 0 \end{bmatrix}$
- d. $\begin{bmatrix} 0.76 & 0.4 \\ 0.24 & 0.6 \end{bmatrix}$ e. $\begin{bmatrix} 0.8 & 2 \\ 1.2 & 0 \end{bmatrix}$

20.
$$1 - 3 + 3^2 - 3^3 + 3^4 - \dots + 3^{98}$$

a.
$$3^{99}-1$$
 b. $\frac{3^{99}-1}{3}$ c. $\frac{(-3)^{99}-1}{-4}$