In problems 1 and 2 let $U=\{a,\,b,\,c,\,d,\,e,\,f,\,g\}$ be the universal set, $R=\{a,\,e\},\,S=\{b,\,c,\,d,\,f,\,g\},\,T=\{b,\,c,\,f,\,g\}.$

- Find ($R \cap T'$) 1.
- a) R b) S
- c) T d) {a, d, e} e) {d, e, f, g}
- Find $R \cap (T \cup S')'$. 2.
- a) R
- b) $\{a\}$ c) $\{a, d, e, f, g\}$ d) U e) \emptyset
- If n(S) = 5, n(T) = 3, $n(S \cup T) = 6$, what is $n(S \cap T')$? 3.
- a) 1
- b) 2
 - c) 3
- d) 4
- e) 5
- Which of the following sets describes the shaded area? 4.

a) $R' \cap S \cap T'$

- b) $R' \cap S' \cap T$
- c) $(R \cap S)' \cap T$

d) $R \cap S \cap T'$

e) $(R \cup S) \cap T$

5.	In a class of 50	juniors and	d seniors,	20 like	baseball.	Fifteen	of the	25
	seniors dislike	baseball. I	How many	/ juniors	dislike b	aseball?		

- a) 15
 - b) 10
- c) 5 d) 25
- e) 20

In a group of 40 people, 20 regularly read "Time", 9 read "Money" and 19 read Newsweek". Moreover, 4 of them read "Time" and "Money", 6 read "Money" and "Newsweek" and 10 read "Time" and "Newsweek". Finally, 3 of them regularly read all three. How many people in this group read none 6. of the three magazines?

- a) 9
- b) 1
- c) 11
- d) 3 e) 19

In problems 7 and 8 assume that the alphabet consists of 26 letters.

- How many different 4-letter words can be formed when no repetitions of 7. letters are allowed?
- a) P(26, 21)

 - b) 4! c) C(26, 4) d) P(26, 4) e) 26⁴

How many different 4-letter words can be formed when repetitions of 8. letters are allowed?

- a) P(26, 21)
- b) 4! c) C(26, 4) d) P(26, 4) e) 26⁴

9.	There are 12 ways a person can select a left shoe and a right shoe so that
	the shoes do not match. How many different pairs of shoes does this
	person have?

- a) 6 b) 4 c) 12²
- d) P(12, 2)
- e) 12

10. Which of the following is the value of C(8, 4)?

- a) 336
- b) 120
- c) 20
- d) 64
- e) 70

In problems 11 & 12 assume there are 52 cards in a deck. A poker hand consists of 5 cards.

- 11. How many different poker hands consist entirely of aces and kings?
- a) 5!
- b) 24
- c) P(8,5)
- d) C(8, 5)
- e) 2^{5}

12. How many poker hands contain exactly 3 aces?

- a) C(52, 3)
- b) $P(4,3) \cdot P(48,2)$
- c) P(52, 3)

- d) 3^4
- e) $C(4, 3) \cdot C(48, 2)$

- 13. In how many ways can a coach and five basketball players line up in a row for a picture if the coach insists on standing at one of the ends of the row?
- a) 240
- b) 120
- c) 24
- d) 64
- e) 32

In problems 14, 15 and 16 assume an urn contains 15 numbered balls, 8 of the balls are green and 7 are blue. A sample of 5 is selected.

- 14. How many samples contain blue balls only?
- a) 2C(7, 5) b) C(7, 5)
- c) 7
- d) C(8, 5)
- e) 5!

- 15. How many samples contain 1 green and 4 blue balls?
- a) C(7, 4)

- b) $C(7, 4) \cdot C(8, 1)$
- c) C(8, 5)

- d) $C(7, 1) \cdot C(8, 4)$
- e) C(15, 5)

- 16. How many samples have at most 2 blue balls?
- a) $C(7, 0) \cdot C(8, 5) + C(7, 1) \cdot C(8, 4) + C(7, 2) \cdot C(8, 3)$
- b) $C(8, 5) + C(7, 1) \cdot C(8, 4)$

- c) $2 \cdot C(8, 3)$
- d) $C(7, 0) \cdot C(8,5) + C(5,2) \cdot C(8,3)$
- e) C(8, 5) + C(8, 4) + C(8, 3)

17. Assuming one can only move south or west. How many routes from A to B pass through C in the diagram below?

a) $2^3 \cdot 3^4$

- b) $\binom{12}{5}$ c) C(5, 2) · C(7, 3)
- d) C(5, 2) + C(7, 3) e) $P(5, 2) \cdot P(7, 3)$
- 18. What is the coefficient of x^2y^4 in the expansion of $(3x + y)^6$?
- a) 15

- b) 45 c) 81 d) 9 e) 135
- 19. A coin is tossed 6 times. How many different outcomes have 2 or more heads?
- a) 27

- b) 64 c) 57 d) 36 e) C(6, 2)
- 20. In how many ways can 15 construction workers be divided into 3 groups of 5, each of which is to mix concrete?
- a) 3! 5!
- b) $\frac{15!}{(5!)^3}$ c) $\frac{15!}{3!(5!)^3}$ d) $\frac{15!}{5!}$ e) $\frac{15!}{3!5!}$