1. Let $S=\{a, b, c, d, e\}$ be a sample space. How many events are associated with S ?
(a) 10
(b) 16
(c) 32
(d) 25
(e)
2. Let E and F be events for which $\operatorname{Pr}(\mathrm{E})=.3, \operatorname{Pr}(\mathrm{~F})=.6, \operatorname{Pr}\left(\mathrm{E} \cap \mathrm{F}^{\prime}\right)=.1$. Find $\operatorname{Pr}(E \cup F)$.
(a) .2
(b) .3
(c) .7
(d) .8
(e) .9
3. An urn contains 6 white balls and 4 green balls. A sample of 2 balls is selected at random What is the probability of selecting only white balls?
(a) $\frac{\binom{6}{2}}{\binom{4}{2}}$
(b) $\frac{\binom{6}{2}\binom{4}{2}}{\binom{10}{2}}$
(c) $\frac{\binom{6}{2}\binom{5}{1}}{\binom{10}{2}}$
(d) $\frac{\binom{4}{0}+\binom{6}{2}}{10}$
(e) $\frac{\binom{6}{2}}{\binom{10}{2}}$
4. Three people are chosen at random. What is the probability that at least 2 of them were born on the same day of the week?
(a) $\frac{3}{7}$
(b) $\frac{16}{49}$
(c) $\frac{2}{7}$
(d) $\frac{21}{49}$
(e) $\frac{6}{49}$
5. A coin is tossed 5 times. What is the probability of obtaining 3 heads and 2 tails?
(a) $\frac{5}{16}$
(b) $\frac{3}{5}$
(c) $\frac{3}{32}$
(d) $\frac{3}{10}$
(e) $\frac{1}{2}$
6. A scarecrow, a tin man, a lion, a dog, and a little girl stand in random order in a line to meet a wizard. What is the probability that the lion and the dog are standing next to each other?
(a) $\frac{1}{4}$
(b) $\frac{2}{5}$
(c) $\frac{1}{2}$
(d) $\frac{4}{7}$
(e) $\frac{5}{8}$
7. Mr. Kafka has 5 pairs of gloves. If he randomly picks a right glove and a left glove, what is the probability that the gloves match?
(a) $\frac{1}{25}$
(b) $\frac{2}{25}$
(c) $\frac{1}{5}$
(d) $\frac{1}{20}$
(e) $\frac{4}{25}$

In the next 2 problems, let S be a sample space with E, F, and G events associated to S . Assume that $\operatorname{Pr}(E)=0.4 \operatorname{Pr}\left(F^{\prime}\right)=0.5$ $\operatorname{Pr}\left(\mathrm{G}^{\prime}\right)=0.6$ and $\operatorname{Pr}(\mathrm{F} \cap \mathrm{G})=0.2$.
8. If E and F are independent, what is $\operatorname{Pr}(\mathrm{EIF})$?
(a) .4
(b) $\frac{4}{5}$
(c) .5
(d) .02
(e) $\frac{4}{9}$
9. Calculate $\operatorname{Pr}(\mathrm{FIG})$.
(a) .02
(b) .03
(c) $\frac{2}{5}$
(d) $\frac{1}{2}$
(e) .2
10. To win a particular game, a person must roll a die and get a 1 or 2 . To start, the person tosses a coin. If it lands heads, then they get only one roll of a die to get a 1 or 2 . If it lands tails, then they get two rolls of a die to get a 1 or 2 . What is the probability of winning the game?
(a) $\frac{1}{12}$
(b) $\frac{5}{12}$
(c) $\frac{4}{9}$
(d) $\frac{1}{6}$
(e) $\frac{7}{10}$
11. If the odds in favor of an event are 3 to 5 , what is the probability that the event will occur?
(a) $\frac{3}{5}$
(b) $\frac{2}{5}$
(c) $\frac{3}{8}$
(d) $\frac{5}{8}$
(e) $\frac{8}{15}$
12. A pair of dice is rolled. What is the probability that one or more of the top two faces is a 5 given that the sum of the top two faces is 9 ?
(a) $\frac{1}{6}$
(b) $\frac{5}{36}$
(c) $\frac{1}{2}$
(d) $\frac{1}{4}$
(e) $\frac{2}{9}$
13. A bucket contains 4 white spheres and 4 red spheres. 3 spheres are selected at random. What is the probability that at least one of the selected spheres is white?
(a) $\frac{3}{4}$
(b) $\frac{13}{14}$
(c) $\frac{1}{10}$
(d) $\frac{19}{24}$
(e) $\frac{5}{6}$

Table for Problem 14
1
. 2 . 3
2 . 3 . 8
3 . 5 . 6
14. An island contains one-headed, two-headed, and three-headed dragons. The table above shows the proportion of each in the general dragon population and their probability of being magic. What is the probability that a randomly chosen dragon has 3 heads given that it is magic?
(a) $\frac{1}{2}$
(b) .6
(c) .3
(d) $\frac{1}{1 T}$
(e) .18

.3							
.2							
.1							
Histogram for							
Problem 15.							

15. The histogram above represents a probability distribution. What is the probability that the outcome is greater than or equal to 4 ?
(a) .2
(b) .3
(c) .4
(d) .6
(e) .8

In the next 2 problems X is a random variable. Let X have the following probability distribution.

k	$\operatorname{Pr}(\mathrm{X}=\mathrm{k})$
-1	.1
0	.2
1	.4
2	.3

Probability distribution
For problems 16 and 17.
16. What is the expected value of X ?
(a) 0
(b) 1
(c) .3
(d) . 5
(e) .9
17. Find the probability distribution of X^{2}.
(a)

k	$\operatorname{Pr}\left(\mathrm{X}^{2}=\mathrm{k}\right)$
0	.4
1	.5
2	.2

(b) | k | $\operatorname{Pr}\left(\mathrm{X}^{2}=\mathrm{k}\right)$ |
| :---: | :---: |
| 0 | .2 |
| 1 | .5 |
| 4 | .3 |

(c) $k \quad \operatorname{Pr}\left(X^{2}=k\right)$
(d)
0
1
(d) $k \quad \operatorname{Pr}\left(X^{2}=k\right)$
-1
0
(e) $k \quad \operatorname{Pr}\left(X^{2}=k\right)$

number of heads	number of occurrences
0	2
1	1
2	4
3	2
4	1

Frequency distribution for Problem 18.
18. An experiment consists of flipping a coin 4 times and counting the number of heads. The experiment is repeated 10 times. Above is a frequency distribution table of the outcomes. What is the mean?
(a) 1.9
(b) 2
(c) 1
(d) .26
(e) 2.5
19. An experiment consists of flipping a coin 2 times and counting the number of tails. Compute the variance of the probability distribution of the experiment.
(a) 1
(b) $\frac{1}{16}$
(c) $\frac{3}{8}$
(d) $\frac{1}{2}$
(e) $\frac{3}{4}$
20. An experiment consists of flipping a coin either 3 times or until a flip lands "heads", whichever comes first. Let X count the number of flips in a trial. What is the expected value of the random variable X ?
(a) $\frac{7}{4}$
(b) $\frac{1}{2}$
(c) 1
(d) $\frac{3}{4}$
(e) 0

