1. Let $S = \{a, b, c, d, e\}$ be a sample space. How many events are associated with S?

(a) 10 (b) 16 (c) 32 (d) 25 (e) 120

2. Let E and F be events for which Pr(E) = .3, Pr(F) = .6, $Pr(E \cap F') = .1$. Find Pr (E \cup F).

(a) .2 (b) .3 (c) .7 (d) .8 (e) .9

3. An urn contains 6 white balls and 4 green balls. A sample of 2 balls is selected at random What is the probability of selecting only white balls?

(a)
$$\frac{\binom{6}{2}}{\binom{4}{2}}$$
 (b) $\frac{\binom{6}{2}\binom{4}{2}}{\binom{10}{2}}$ (c) $\frac{\binom{6}{2}\binom{5}{1}}{\binom{10}{2}}$
(d) $\frac{\binom{4}{0} + \binom{6}{2}}{10}$ (e) $\frac{\binom{6}{2}}{\binom{10}{2}}$

- 4. Three people are chosen at random. What is the probability that at least 2 of them were born on the same day of the week?
 - (a) $\frac{3}{7}$ (b) $\frac{16}{49}$ (c) $\frac{2}{7}$ (d) $\frac{21}{49}$ (e) $\frac{6}{49}$

- 5. A coin is tossed 5 times. What is the probability of obtaining 3 heads and 2 tails?
 - (a) $\frac{5}{16}$ (b) $\frac{3}{5}$ (c) $\frac{3}{32}$ (d) $\frac{3}{10}$ (e) $\frac{1}{2}$

- 6. A scarecrow, a tin man, a lion, a dog, and a little girl stand in random order in a line to meet a wizard. What is the probability that the lion and the dog are standing next to each other?
 - (a) $\frac{1}{4}$ (b) $\frac{2}{5}$ (c) $\frac{1}{2}$ (d) $\frac{4}{7}$ (e) $\frac{5}{8}$

7. Mr. Kafka has 5 pairs of gloves. If he randomly picks a right glove and a left glove, what is the probability that the gloves match?

(a)
$$\frac{1}{25}$$
 (b) $\frac{2}{25}$ (c) $\frac{1}{5}$ (d) $\frac{1}{20}$ (e) $\frac{4}{25}$

In the next 2 problems, let S be a sample space with E, F, and G events associated to S. Assume that Pr(E) = 0.4 Pr(F') = 0.5 Pr(G') = 0.6 and $Pr(F \cap G) = 0.2$.

8. If E and F are independent, what is Pr(EIF)?

9.

(a) .4 (b) $\frac{4}{5}$ (c) .5 (d) .02 (e) $\frac{4}{9}$ Calculate Pr(FIG). (a) .02 (b) .03 (c) $\frac{2}{5}$ (d) $\frac{1}{2}$ (e) .2

10. To win a particular game, a person must roll a die and get a 1 or 2. To start, the person tosses a coin. If it lands heads, then they get only one roll of a die to get a 1 or 2. If it lands tails, then they get two rolls of a die to get a 1 or 2. What is the probability of winning the game?

(a)
$$\frac{1}{12}$$
 (b) $\frac{5}{12}$ (c) $\frac{4}{9}$ (d) $\frac{1}{6}$ (e) $\frac{7}{10}$

- 11. If the odds in favor of an event are 3 to 5, what is the probability that the event will occur?
 - (a) $\frac{3}{5}$ (b) $\frac{2}{5}$ (c) $\frac{3}{8}$ (d) $\frac{5}{8}$ (e) $\frac{8}{15}$

- 12. A pair of dice is rolled. What is the probability that one or more of the top two faces is a 5 given that the sum of the top two faces is 9?
 - (a) $\frac{1}{6}$ (b) $\frac{5}{36}$ (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ (e) $\frac{2}{9}$

13. A bucket contains 4 white spheres and 4 red spheres. 3 spheres are selected at random. What is the probability that at least one of the selected spheres is white?

(a) $\frac{3}{4}$ (b) $\frac{13}{14}$ (c) $\frac{1}{10}$ (d) $\frac{19}{24}$ (e) $\frac{5}{6}$

Table for			
Problem 14	1	.2	.3
	2	.3	.8
	3	.5	.6

- 14. An island contains one-headed, two-headed, and three-headed dragons. The table above shows the proportion of each in the general dragon population and their probability of being magic. What is the probability that a randomly chosen dragon has 3 heads given that it is magic?
 - (a) $\frac{1}{2}$ (b) .6 (c) .3 (d) $\frac{1}{11}$ (e) .18

- 15. The histogram above represents a probability distribution. What is the probability that the outcome is greater than or equal to 4?
 - (a) .2 (b) .3 (c) .4 (d) .6 (e) .8

In the next 2 problems X is a random variable. Let X have the following probability distribution.

Pr(X = k)	_
.1	Probability distribution
.2	For problems 16 and 17.
.4	
.3	
	Pr(X = k) .1 .2 .4 .3

- 16. What is the expected value of X?
 - (a) 0 (b) 1 (c) .3 (d) .5 (e) .9

17. Find the probability distribution of X^2 .

number of heads	number of occurrences	_
0	2	Frequency distribution
1	1	for Problem 18.
2	4	
3	2	
4	1	

- 18. An experiment consists of flipping a coin 4 times and counting the number of heads. The experiment is repeated 10 times. Above is a frequency distribution table of the outcomes. What is the mean?
 - (a) 1.9 (b) 2 (c) 1 (d) .26 (e) 2.5

- 19. An experiment consists of flipping a coin 2 times and counting the number of tails. Compute the variance of the probability distribution of the experiment.
 - (a) 1 (b) $\frac{1}{16}$ (c) $\frac{3}{8}$ (d) $\frac{1}{2}$ (e) $\frac{3}{4}$

- 20. An experiment consists of flipping a coin either 3 times or until a flip lands "heads", whichever comes first. Let X count the number of flips in a trial. What is the expected value of the random variable X?
 - (a) $\frac{7}{4}$ (b) $\frac{1}{2}$ (c) 1 (d) $\frac{3}{4}$ (e) 0