1. If a random variable has the normal distribution with $\mu=80.0$ and $\sigma=4.8$, find the probability that it will take on a value greater than 76.4.
a. . 7257
b. . 2266
c. 7500
d. . 2743
e. . 7734
2. In a given city, medical expenses are given as the reason for $\frac{3}{4}$ of all personal bankruptcies. What is the probability that medical expenses will be given as the reason for two of the next four personal bankruptcies filed in that city?
a. $\frac{9}{16}$
b. $\frac{9}{256}$
c. $\frac{27}{256}$
d. $\frac{27}{128}$
e. $\frac{81}{128}$
3. It is known that 20 percent of all persons given a certain medication get drowsy within two minutes. Find the probability that among fourteen persons given the medication at most one will get drowsy within two minutes.
a. $1-\left[\binom{14}{0}(.2)^{0}(.8)^{14}+\binom{14}{1}(.2)^{1}(.8)^{13}\right] \quad$ b. $\binom{14}{1}(.2)^{1}(.8)^{13}$
c. $\binom{14}{0}(.2)^{0}(.8)^{14}+\binom{14}{1}(.2)^{1}(.8)^{13}$
d. $1-\binom{14}{1}(.2)^{1}(.8)$

13
e. $14 \cdot .2 \cdot(.8)^{13}$
4. If the assembly time of an "easy to assemble" toy is a random variable having a normal distribution with $\mu=12.8$ minutes and $\sigma=4.0$ minutes, what is the probability that this kind of toy can be assembled in less than 10 minutes?
a. . 2580
b. .7580
c. .2743
d. 2420
e. . 2119
5. Use the normal distribution to approximate the probability of getting at most 7 heads in 16 flips of a balanced coin.
a. . 4013
b. .3085
c. . 2266
d. 5987
e. . 7734
6. Two-thirds of the people in a town oppose an upcoming bond issue. Eighteen people are selected at random. Use the normal approximation to estimate the probability that exactly twelve of them oppose the bond issue.
a. . 5987
b. . 1974
c. . 4013
d. 5000
e. 0.000
7. The length of life of a certain type of refrigerator is normally distributed with a mean of 4.8 years and a standard deviation of 1 year. What period of time should the manufacturer give as a guarantee if he is willing to replace only 0.5 percent of the machines?
a. 6.45 yrs .
b. 2.6 yrs .
c. 7.4 yrs .
d. 3.15 yrs.e. 2.2 yrs .
8. What is the equation of a line that passes through $(4,3)$ with slope $\frac{1}{2}$?
a. $y=\frac{1}{2} x+3$
b. $y=\frac{1}{2} x+1$
c. $y=\frac{3}{4} x+\frac{1}{2}$
d. $y=4 x+3$
e. $y=\frac{1}{2} x+4$
9.

The unshaded region is the feasible set (i.e. set of solutions) for which set of inequalities?
a. $y \geq \frac{3}{2} x$
b. $y \leq \frac{3}{2} x$
c. $y \leq \frac{3}{2} x$
$y \leq \frac{1}{2} x-4$
$y \leq-\frac{1}{2} x+4$
$y \geq-\frac{1}{2} x+4$
d. $y \geq \frac{3}{2} x$
e. $y \geq \frac{2}{3} x$
$y \leq-\frac{1}{2} x+4$
$y \leq-\frac{1}{2} x+4$
10. What is the y-intercept of a line that passes through $(-4,-3)$ and is perpendicular to $\mathrm{y}=2 \mathrm{x}-3$?
a. -3
b. $-5 \frac{1}{2}$
c. -1
d. -11
e. -5
11. The matrix $\left[\begin{array}{rrr}-1 & 1 & -1 \\ 2 & -1 & 3 \\ 2 & 0 & 6\end{array}\right]$ is pivoted about the circled entry. What is the entry in the second row third column of the resulting matrix?
a. 1
b. 0
c. -1
d. 4
e. 2
12. Use Gaussian elimination to find all solutions of the following matrix.

$$
\left[\begin{array}{ll|r}
x & y & \\
1 & 2 & -1 \\
0 & 1 & 3
\end{array}\right] .
$$

a. $x=3$
$y=-7$
b. $x=-1$
c. $x=-7$
$y=3$
d. $x=2$
$y=1$
$y=3$
e. The system has no solution.
13. Two sociologists have grant money to study school bussing in a certain city. They wish to conduct a survey using 600 telephone contacts and 400 house contacts. Survey company A has personnel to do 30 telephone and 10 house contacts per hour; survey company B can handle 20 telephone and 20 house contacts per hour. If $x=\#$ hours A and $y=\#$ hours B , which set of equations should be used to determine how many hours should be scheduled for each firm to produce exactly the number of contacts needed?
a. $\quad 30 x+20 y=400$
b. $30 x+10 y=600$
$10 x+20 y=600$
$20 x+20 y=400$
d. $30 x+20 y=600$
e. $\quad 30 x+20 y=400$
$10 x+20 y=400$

$$
20 x+20 y=600
$$

c. $30 x+10 x=600$
$10 y+20 y=400$
14. What is the solution set of the following system of linear equations?

$$
\begin{aligned}
& x+2 y-5 z=-1 \\
& x+3 y-7 z=0 \\
& x+5 y-12 z=1
\end{aligned}
$$

a. $x=-1, y=0, z=1$
b. $x=-2, y=3, z=1$
c. $x=-3, y=1, z=-1$
d. There are infinitely many solutions.
e. There is no solution.
15. The augmented matrix of a system of equations is given by:

$$
\left[\begin{array}{lll|l}
1 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { x y z }
$$

What is the general solution to the system?
a. $\quad \mathrm{x}=-3$
$y=$ any value
b. $x=-3 y$
c. $x=-3 y$
$y=0$
$z=$ any value

$$
\begin{aligned}
& y=\text { any value } \\
& z=0
\end{aligned}
$$

d. $\quad x=-6$
$y=2$
$z=0$
e. $x=3$
$y=1$
$z=0$
16. Let $A=\left[\begin{array}{rr}-1 & 1 \\ 2 & 3 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{rrr}-1 & 0 & 3 \\ 1 & 2 & 2\end{array}\right]$. What is $A B$?
a. $\left[\begin{array}{rrr}2 & 2 & -1 \\ 1 & 6 & 12 \\ -1 & 0 & 3\end{array}\right]$
b. $\left[\begin{array}{rr}4 & -1 \\ 5 & 7\end{array}\right]$
c. $\left[\begin{array}{lll}2 & 2 & 1 \\ 5 & 6 & 3 \\ 1 & 0 & 3\end{array}\right]$
d. $\left[\begin{array}{rr}-1 & 5 \\ 4 & 7\end{array}\right]$
e. Not defined.
17. Let $A=\left[\begin{array}{ll}6 & 2 \\ 5 & 2\end{array}\right]$. What is the entry in the first row and second column of the matrix A^{-1} ?
a. $\frac{5}{2}$
b. 1
c. 3
d. 2
e. -1
18. If $A=\left[\begin{array}{rrr}1 & -1 & 1 \\ 0 & 2 & -1 \\ 2 & 3 & 0\end{array}\right]$ and $A^{-1}=\left[\begin{array}{rrr}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]$ the solution of the system of equations

$$
\begin{aligned}
x-y+z & =3 \\
2 y-z & =1 \\
2 x+3 y & =4
\end{aligned}
$$

a. $x=6, y=-2, z=-9$
b. $x=8, y=-4, z=-9$
c. $x=3, y=1, z=4$
d. There is no solution.
e. $x=16, y=-12, z=-25$
19. Which of the following is both a stochastic matrix and is regular?
a. $\left[\begin{array}{ll}.9 & .4 \\ .1 & .5\end{array}\right]$
b. $\left[\begin{array}{ll}.1 & .2 \\ .3 \\ .5 \\ . & .3\end{array}\right]$
c. $\quad\left[\begin{array}{l}.7 \\ .3 \\ .6 \\ .6\end{array}\right]$
d. $\left[\begin{array}{ll}.8 & -.1 \\ .2 & 1.1\end{array}\right]$
e. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
20. From past records it is found that from May through September, when it rains one day, then the probability of rain for the next day is .4 ; when it does not rain one day, then the probability of rain the next day is .06 . The matrix of the Markov process is given by:

a.	current			b.	current	
	rain	no rain			rain	no rain
rain	. 4	. 06	rain	. 4		. 94
no rain	. 6	. 94	no rain	. 6		. 06
c.	current			d.		current
	rain	no rain			rain	no rain
rain	. 6	. 06	rain	. 6		. 94
no rain	. 4	. 94	no rain	. 4		. 06

e. current		
	rain	no rain
rain	.06	.4
no rain	.94	.6

