1. Which of the following is the graph of a single linear equation?
2. What is the y-intercept of the line $3 x+4 y=2$?
a. $\left(\frac{2}{3}, 0\right)$
b. $(2,0)$
c. $\left(0, \frac{2}{3}\right)$
d. $\left(\frac{1}{2}, 0\right)$
e. $\left(0, \frac{1}{2}\right)$
3.

What is the feasible set for the following system of linear inequalities?

$$
\left\{\begin{array}{l}
2 x \geq y \\
y \geq-\frac{2}{3} x+\frac{16}{3}
\end{array}\right.
$$

a. I
b. II
c. III
d. IV
e. none of the others
4. Which of the following points satisfies the inequality $x-2 y \geq 4$?
a. $(3,4)$
b. $(0,1)$
c. $(4,2)$
d. $(4,0)$
e. $(5,1)$
5. What is the point of intersection of the following lines?

$$
\left\{\begin{array}{r}
2 x+3=5 \\
x+3 y=10
\end{array}\right.
$$

a. $(2,1)$
b. $(5,10)$
c. $(1,3)$
d. $(0,5)$
e. $(4,-3)$
6. What is the slope of the line passing through the points $(4,2)$ and $(8,3)$?
a. -4
b. $\frac{1}{4}$
c. 4
d. $-\frac{1}{4}$
e. $\frac{5}{12}$
7. What is the x-intercept of the line passing through the point $(2,13)$ and perpendicular to the line $y=2 x+13$?
a. $(0,0)$
b. $(7,0)$
c. $\left(-\frac{11}{2}, 0\right)$
d. $(-24,0)$
e. $(28,0)$
8. Which of the following pairs of lines is not parallel?
a. $y=-3 x+2$ and $-3 x+y=4$
b. $y=-2 x+1$ and $2 x+y=0$
c. $y=3 \quad$ and $\quad y=1$
d. $y=-6 x \quad$ and $\quad 12 x+2 y=0$
e. $4 y=8 x+16$ and $y-2 x=0$
9. A dogowner finds that the number of times his puppy responds correctly to his commands is related to the amount of time he spends practicing with her by a linear equation. One week he practices 420 minutes with her and she responds correctly 560 times. The next week he practices 300 minutes and she responds correctly 320 times. If x is the number of minutes spent practicing and y is the number of correct responses by the puppy, which of the following equations correctly describes the relationship between x and y
a. $y+2 x=-280$
b. $y-2 x=-280$
c. $2 \mathrm{y}+\mathrm{x}=-280$
d. $2 \mathrm{y}-\mathrm{x}=280$
e. $y+2 x=$
280
10. Use Gaussian elimination to find the solution of the following matrix.
x y
$\left[\begin{array}{ll|l}1 & 2 & 1 \\ 0 & 2 & 4\end{array}\right]$.
a. $\begin{aligned} & x=-3 \\ & y=4\end{aligned}$
b. $\begin{aligned} & x=1 \\ & y=4\end{aligned}$
c. $\begin{aligned} & x=1 \\ & y=2\end{aligned}$
d. $\begin{aligned} & x=-3 \\ & y=-2\end{aligned}$
e. The system has no solution.
11. Suppose he following matrix is pivoted about the circled entry. In the resulting matrix, what is the entry in the third row, third column?

$$
\left[\begin{array}{rrrr}
1 & -1 & 1 & 2 \\
0 & 2 & 1 & 4 \\
0 & -2 & 8 & 7 \\
0 & 4 & 3 & 1
\end{array}\right]
$$

a. 8 b. 7.5
c. 9
d. 8.5
e. 7
12. What is the solution of the following system of linear equations?

$$
\begin{gathered}
x+2 y-z=2 \\
x+3-z=2 \\
2 x+3 y+z=1
\end{gathered}
$$

$x=1$
$x=1$
$x=-1$
d. $\begin{aligned} & \mathrm{x}=-1 \\ & \mathrm{y}=1 \\ & \mathrm{z}=1\end{aligned}$
e. no solution
a. $\begin{aligned} y & =1 \\ z & =-1\end{aligned}$
b. $\begin{aligned} & y=0 \\ & z=-1\end{aligned}$
c. $\begin{aligned} y & =0 \\ z & =1\end{aligned}$
13. What is the solution of the system of linear equations represented by the following matrix:

$$
\left[\begin{array}{lll}
x & y & z \\
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 4 \\
0 & 1 \\
0
\end{array}\right]
$$

a. $\quad \mathrm{x}=2$
$y=-4 z+1$
$z=$ any value
b. $x=2$
$y=4 z-1$
$z=$ any value
c. $\quad x=-2$
$y=$ any value
$z=4 y+1$
d. $x=-2$
$y=-4 z+1$
$z=$ any value
e. $x=2$

$$
\begin{aligned}
& y=\text { any value } \\
& z=4 y+1
\end{aligned}
$$

14. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 3 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 2 & 3 \\ 4 & 2\end{array}\right]$. What is $A B$?
a. $\left[\begin{array}{ll}16 & 10 \\ 13 & 11\end{array}\right]$
b. $\left[\begin{array}{ccc}0 & 3 & 1 \\ 2 & 13 & 9 \\ 4 & 14 & 14\end{array}\right]$
c. $\left[\begin{array}{rrr}0 & 2 & 4 \\ 3 & 13 & 14 \\ 1 & 9 & 14\end{array}\right]$
d. $\left[\begin{array}{ll}16 & 13 \\ 10 & 11\end{array}\right]$
e. undefined
15. If A is a 2×3 matrix, B is a 3×2 matrix, C is a 3×3 matrix and D is a 2×6 matrix, which of the following products is always defined?
a. C^{-1}
b. BAD
c. BACD
d. BDC
e. $A C$
16. The matrix $\left[\begin{array}{ll}3 & x \\ 4 & 12\end{array}\right]$ has no inverse if x is equal to:
a. 12
b. 36
c. 4
d. 9
e. 32
17. Suppose $A=\left[\begin{array}{ll}6 & 3 \\ 0 & 1\end{array}\right]$. What is A^{-1} ?
a. $\left[\begin{array}{rr}\frac{1}{6} & -\frac{3}{6} \\ 0 & \frac{6}{6}\end{array}\right]$
b. $\left[\begin{array}{rr}\frac{6}{6} & -\frac{3}{6} \\ 0 & \frac{1}{6}\end{array}\right]$
c. $\left[\begin{array}{ll}1 & \frac{3}{6} \\ 0 & \frac{6}{6}\end{array}\right]$
d. $\left[\begin{array}{ll}\frac{6}{6} & \frac{3}{6} \\ 0 & \frac{1}{6}\end{array}\right]$
$\left[\begin{array}{rr}\frac{1}{6} & 0 \\ -\frac{3}{6} & \frac{6}{6}\end{array}\right]$
e.
18. Suppose $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ what is $A+A^{-1}$?
a. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
b. $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
c. $\left[\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right]$
d. $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
e. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
19. If $A=\left[\begin{array}{rrr}-7 & 8 & 4 \\ -1 & 1 & 1 \\ 2 & -2 & -1\end{array}\right]$ and $A^{-1}=\left[\begin{array}{rrr}1 & 0 & 4 \\ 1 & -1 & 3 \\ 0 & 2 & 1\end{array}\right]$ then what is the solution of the following system of linear equations?

$$
\begin{array}{r}
-7 x+8 y+4 z=3 \\
-x+y+z=1 \\
2 x-2 y-z=4
\end{array}
$$

a. $x=19$
b. $x=19$
c. $x=3$
$y=2$
$y=14$
$y=14$
$z=0$
d. $x=3$
$y=14$
$z=6$
e. $x=19$
$y=2$
$z=0$
20. Use the Gauss-Jordan method to calculate the inverse of the following matrix.
$\left[\begin{array}{rrr}1 & 2 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & 0\end{array}\right]$
a. $\left[\begin{array}{rrr}0 & 0 & -1 \\ 0 & 1 & 0 \\ \frac{1}{2} & -1 & \frac{1}{2}\end{array}\right]$
b. $\left[\begin{array}{rrr}1 & 2 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & 0\end{array}\right]$
c. $\left[\begin{array}{rrr}0 & 0 & -1 \\ 0 & 1 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2}\end{array}\right]$
d. $\left[\begin{array}{llll}1 & -2 & 0 \\ 0 & 1 & 0 \\ 1 & -2 & 1\end{array}\right]$
e. $\left[\begin{array}{rrr}0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & -2 & 1\end{array}\right]$

