1. Which of the following is the graph of a single linear equation?

- 2. What is the y-intercept of the line 3x + 4y = 2?
- a. $(\frac{2}{3}, 0)$ b. (2,0) c. $(0, \frac{2}{3})$ d. $(\frac{1}{2}, 0)$ e. $(0, \frac{1}{2})$

3.

a.

What is the feasible set for the following system of linear inequalities?

$$\begin{cases} 2x \ge y \\ y \ge -\frac{2}{3}x + \frac{16}{3} \end{cases}$$
I b. II c. III d. IV e. none of the others

- 4. Which of the following points satisfies the inequality $x 2y \ge 4$?
- a. (3,4) b. (0,1) c. (4,2) d. (4,0) e. (5,1)

- 5. What is the point of intersection of the following lines?
- $\begin{cases} 2x + y = 5 \\ x + 3y = 10 \end{cases}$ a. (2,1) b. (5,10) c. (1,3) d. (0,5) e. (4,-3)

6. What is the slope of the line passing through the points (4,2) and (8,3)?

a. -4 b. $\frac{1}{4}$ c. 4 d. $-\frac{1}{4}$ e. $\frac{5}{12}$

7. What is the x-intercept of the line passing through the point (2,13) and perpendicular to the line y = 2x + 13?

a. (0,0) b. (7,0) c.
$$\left(-\frac{11}{2},0\right)$$
 d. (-24,0) e. (28,0)

8. Which of the following pairs of lines is <u>not</u> parallel?

a.	y = -3x + 2	and	-3x + y = 4
b.	y = -2x + 1	and	2x + y = 0
c.	y = 3	and	y = 1
d.	y = - 6x	and	12x + 2y = 0
e.	4y = 8x + 16	and	y - 2x = 0

- 9. A dogowner finds that the number of times his puppy responds correctly to his commands is related to the amount of time he spends practicing with her by a linear equation. One week he practices 420 minutes with her and she responds correctly 560 times. The next week he practices 300 minutes and she responds correctly 320 times. If x is the number of minutes spent practicing and y is the number of correct responses by the puppy, which of the following equations correctly describes the relationship between x and y
- a. y + 2x = -280 b. y 2x = -280 c. 2y + x = -280
- d. 2y x = 280 e. y + 2x = 280

10. Use Gaussian elimination to find the solution of the following matrix.

- a. $\begin{array}{c} x = -3 \\ y = 4 \end{array}$ b. $\begin{array}{c} x = 1 \\ y = 4 \end{array}$ c. $\begin{array}{c} x = 1 \\ y = 2 \end{array}$ d. $\begin{array}{c} x = -3 \\ y = 2 \end{array}$
- e. The system has no solution.

11. Suppose he following matrix is pivoted about the circled entry. In the resulting matrix, what is the entry in the third row, third column?

$$\begin{bmatrix} 1 & -1 & 1 & 2 \\ 0 & 2 & 1 & 4 \\ 0 & -2 & 8 & 7 \\ 0 & 4 & 3 & 1 \end{bmatrix}$$

a. 8 b. 7.5 c. 9 d. 8.5 e. 7

12. What is the solution of the following system of linear equations?

$$x + 2y - z = 2$$

 $x + y - z = 2$
 $2x + 3y + z = 1$

$$x = 1$$
 $x = 1$ $x = -1$ $x = -1$ $a. y = 1$ $b. y = 0$ $c. y = 0$ $d. y = 1$ $e.$ no solution $z = -1$ $z = -1$ $z = 1$ $z = 1$

13. What is the solution of the system of linear equations represented by the following matrix:

$$\begin{bmatrix} x & y & z \\ 1 & 0 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}^{2}$$
a. $x = 2$
 $y = -4z + 1$
 $z = any value$
b. $x = 2$
 $y = 4z - 1$
 $z = any value$
c. $x = -2$
 $y = any value$
 $z = any value$
c. $x = -2$
 $y = any value$
 $z = 4y + 1$
d. $x = -2$
 $y = -4z + 1$
 $z = any value$
c. $x = -2$
 $y = any value$
c. $x = -2$
 $z = 4y + 1$

14. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 2 \end{bmatrix}$. What is AB?
a. $\begin{bmatrix} 16 & 10 \\ 13 & 11 \end{bmatrix}$ b. $\begin{bmatrix} 0 & 3 & 1 \\ 2 & 13 & 9 \\ 4 & 14 & 14 \end{bmatrix}$ c. $\begin{bmatrix} 0 & 2 & 4 \\ 3 & 13 & 14 \\ 1 & 9 & 14 \end{bmatrix}$ d. $\begin{bmatrix} 16 & 13 \\ 10 & 11 \end{bmatrix}$

e. undefined

15. If A is a 2x3 matrix, B is a 3x2 matrix, C is a 3x3 matrix and D is a 2x6 matrix, which of the following products is always defined?

а	C^{-1}	b	RAD	c	BACD	Ь	BDC	P	AC
a.	C	υ.	DAD	υ.	DACD	u.		с.	AC

- 16. The matrix $\begin{bmatrix} 3 & x \\ 4 & 12 \end{bmatrix}$ has no inverse if x is equal to:
- a. 12 b. 36 c. 4 d. 9 e. 32

17. Suppose A = $\begin{bmatrix} 6 & 3 \\ 0 & 1 \end{bmatrix}$. What is A⁻¹?

a.
$$\begin{bmatrix} \frac{1}{6} & -\frac{3}{6} \\ 0 & \frac{6}{6} \end{bmatrix}$$
 b.
$$\begin{bmatrix} \frac{6}{6} & -\frac{3}{6} \\ 0 & \frac{1}{6} \end{bmatrix}$$
 c.
$$\begin{bmatrix} \frac{1}{6} & \frac{3}{6} \\ 0 & \frac{6}{6} \end{bmatrix}$$
 d.
$$\begin{bmatrix} \frac{6}{6} & \frac{3}{6} \\ 0 & \frac{1}{6} \end{bmatrix}$$
 e.
$$\begin{bmatrix} \frac{1}{6} & 0 \\ -\frac{3}{6} & \frac{6}{6} \end{bmatrix}$$

18. Suppose A =
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 what is A + A⁻¹?
a. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ b. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ c. $\begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$ d. $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ e. $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

19. If A = $\begin{bmatrix} -7 & 8 & 4 \\ -1 & 1 & 1 \\ 2 & -2 & -1 \end{bmatrix}$ and A⁻¹ = $\begin{bmatrix} 1 & 0 & 4 \\ 1 & -1 & 3 \\ 0 & 2 & 1 \end{bmatrix}$ then what is the solution of the following system of linear equations?

20. Use the Gauss-Jordan method to calculate the inverse of the following matrix. $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$

a.
$$\begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ \frac{1}{2} & -1 & \frac{1}{2} \end{bmatrix}$$
 b. $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$
 c. $\begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} \end{bmatrix}$

 d. $\begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}$
 e. $\begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}$