1. The probability distribution of a random variable X is as follows:

X = k	Pr(X = k)
10	0.3
20	0.4
30	0.3

What is the variance of X?

- a. 460
- b. 20 c. 60 d. 6
- e. 0

- Each time a basketball player attempts a free throw, she has an 80% chance of making it. Let X be the number of free throws she makes in 100 attempts. Find the standard deviation of X.
- a. 16
- b. 0.16
- c. 80
- d. 20
- e. 4

- 5. Let Z be a random variable with a standard normal distribution. What is Pr(-1 < Z < 1.5)?
- a. 0.6247
- b. 0.7683 c. 0.7745
- d. 0.7621
- e. 0.7925

6.	The manufacturer of the light bulb, Sunshine, has found that the life of the	
	bulb is normally distributed with mean μ = 1000 hours and standard	
	deviation σ = 50 hours. The company decides to give a money back	
	guarantee if a light bulb fails before 950 hours. A bulb is selected	
	at random. What is the probability that the company will have to refund its	
	price?	

- a. 0.0228
- b. 0.1
- c. 0.9772
- d. 0.1587 e. 0.0002

7. A random variable X has a normal distribution with mean $\mu = 20$. If $Pr(X \ge 30) = 0.0668$, find σ , the standard deviation of X.

- a. 10 b. $\frac{20}{3}$ c. $\frac{25}{4}$ d. $\frac{17}{3}$
- e. 1

One-third of the people in a town oppose an upcoming bond issue. 9. Eighteen people are selected at random. Use the normal approximation to estimate the probability that exactly five of them oppose the bond issue.

- a. 0.1747
- b. 0.1915 c. 0.1498
- d. 0.3413
- e. 0.3085

11. A line L passes through the point (1,2) and is parallel to the line

2x + 3y = 1. What is the x - intercept of the line L?

a.
$$(\frac{7}{2}, 0)$$

- a. $(\frac{7}{2}, 0)$ b. (4, 0) c. $(0, \frac{8}{3})$ d. (2, 0)

e. L does not intersect the x- axis.

- 12. A car dealer offers its new employees a weekly salary of \$250 plus a 3% commission on sales. After one year, employees receive \$150 per week and a 5% commission. For what weekly sales level will the two scales produce the same salary?
- a. \$1,500 b. \$3,000 c. \$10,000 d. \$2,000 e. \$5,000

13. If
$$A = \begin{bmatrix} -1 & 2 \\ 0 & 1 \\ 2 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$ then $2A + B$ is given by:

$$B = \begin{bmatrix} 2 & 3 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$$

a.
$$\begin{bmatrix} 3 & 8 \\ -2 & 5 \\ 2 & 1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 0 & 7 \\ -1 & 4 \\ 4 & -1 \end{bmatrix}$$

a.
$$\begin{bmatrix} 3 & 8 \\ -2 & 5 \\ 2 & 1 \end{bmatrix}$$
 b. $\begin{bmatrix} 0 & 7 \\ -1 & 4 \\ 4 & -1 \end{bmatrix}$ c. $\begin{bmatrix} 0 & 7 \\ 2 & 3 \\ 1 & -2 \end{bmatrix}$ d. $\begin{bmatrix} 1 & 5 \\ -1 & 3 \\ 2 & 0 \end{bmatrix}$ e. $\begin{bmatrix} 4 & 5 \\ 1 & 4 \\ 2 & 3 \end{bmatrix}$

14. Let
$$A = \begin{bmatrix} -1 & 2 \\ 0 & 1 \\ 2 & 3 \end{bmatrix}$$

14. Let
$$A = \begin{bmatrix} -1 & 2 \\ 0 & 1 \\ 2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$. What is AB?

a.
$$\begin{bmatrix} -4 & -1 \\ -1 & 0 \\ 1 & 2 \end{bmatrix}$$
 b. $\begin{bmatrix} -2 & 4 \\ 0 & 1 \\ 2 & -3 \end{bmatrix}$ c. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 7 & -2 \end{bmatrix}$ d. $\begin{bmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 2 \end{bmatrix}$ e. $\begin{bmatrix} -2 & 4 \\ 0 & 2 \\ 1 & -3 \end{bmatrix}$

b.
$$\begin{bmatrix} -2 & 4 \\ 0 & 1 \\ 2 & -3 \end{bmatrix}$$

c.
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 7 & -2 \end{bmatrix}$$

d.
$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 2 \end{bmatrix} e$$

15. Which of the following statements about the solutions of the system:

$$\begin{cases} x + y + 2z = 9 \\ 2x + 4y - 3z = 1 \\ 3x + 6y - 5z = 0 \end{cases}$$
 is correct?

- a. The value of x is 2
- b. The value of x is 1 c. The value of x is -1
- d. There are infinitely many solutions. e. There are no solutions.

16. The matrix obtained by pivoting the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & -1 & 2 \\ 0 & 1 & -2 & 3 \end{bmatrix}$ about the circled entry is:

a.
$$\begin{bmatrix} 4 & 2 & 0 & -2 \\ 1 & 0 & -1 & 2 \\ 0 & -1/2 & 1 & -3/2 \end{bmatrix}$$
 b.
$$\begin{bmatrix} 4 & 2 & 0 & -2 \\ 1 & 0 & 1 & -2 \\ -2 & 1 & 0 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 & 1 & 10 \\ -1 & 0 & -1 & 2 \\ -2 & 1 & 0 & 7 \end{bmatrix}$$

b.
$$\begin{bmatrix} 4 & 2 & 0 & -2 \\ 1 & 0 & 1 & -2 \\ -2 & 1 & 0 & 7 \end{bmatrix}$$

d.
$$\begin{bmatrix} 1/3 & 2/3 & 1 & 4/3 \\ 1 & 0 & 1 & -2 \\ 0 & -1/2 & 1 & -3/2 \end{bmatrix}$$

e.
$$\begin{bmatrix} -2 & 2 & 0 & 10 \\ 1 & 0 & 1 & -2 \\ 2 & 1 & 0 & -1 \end{bmatrix}$$

- 17. Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$. What is the entry in the first row and second column of the matrix A^{-1} ?
- a. 1 b. -1 c. 2 d. -2 e. 0

- 18. Solve $A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ for x, given that $A^{-1} = \begin{pmatrix} -1 & 2 \\ 0 & 2 \end{pmatrix}$.
- a. $x = \frac{3}{2}$ b. x = 4 c. x = 5 d. x = 1 e. x = -1

- 19. Let $A = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$. What is the entry in the second row and first column of A-1?
- a. -2 b. $-\frac{1}{2}$ c. $\frac{1}{2}$ d. 2 e. 1

20. A system of linear equations in the variables x, y, z and w has the

augmented matrix: $\begin{bmatrix} x & y & z & w \\ 1 & 0 & 3 & 0 & -1 \\ 0 & 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \ . \ The general solution of the system is$

a.
$$x = -1 - 3z - w$$

 $y = 2 - 2z$
 $z = any number$
b. $x = -1$
 $y = 2$
 $z = 0$
 $z = any number$
c. $x = -5 + 3z$
 $z = 2z$
 $z = 2z$

d.
$$x = -w$$

 $y = 2$
 $z = 0$
 $z = any number$
e. $x = -1 - 3z$
 $z = 2z$
 $z = 3z$
 $z = 2z$
 $z = 3z$
 $z = 3z$