1. Let $U = \{a, b, c, d, e, f, g, h, i, j\}$ and let $\mathbf{R} = \{a, c, e, g, i\}$; $\mathbf{S} = \{b, c, d, e, f, g\}$; $\mathbf{T} = \{a, c, d, f, h, i\}$

Which of the sets below is $(R \cap T') \cap S$?

- (a) {c}
- (b) {a, c, e, f } (c) {d, f }
- (d) $\{e, g\}$

(e) Ø

2. Consider the following set:

 $U = \{all professors\}$

A = {female professors}

 $\mathbf{B} = \{\text{professors under 40 years of age}\}\$

 $(A \cap B)'$ is the set

- (a) {professors who are male or at least 40 years of age}
- (b) {male professors who are at least 40 years of age}
- (c) {professors who are male and under 40 years of age}
- (d) {professors who are female or under 40 years of age}
- (e) none of the above

3. In which Venn diagram does the shaded portion represent $R' \cap (S \cup T)$?

(e) none of the above

- 4. A survey of 100 bank customers revealed that 58 of them had a savings account, 63 of them had a checking account, 22 of them had a savings account and a loan, 16 of them had a checking account and a loan, 27 of them have only a checking account, 12 of them had a checking account, a savings account and a loan. Each customer had at least a savings account, or a checking account, or a loan. The number of customers who had a loan is
 - (a) 11
- (b) 38
- (c) 37
- (d) 50
- (e) none of these

- 5. An exam contains 5 multiple-choice questions, each having 4 possible answers. In how many different ways can the exam be answered? (Assume that every question must be answered.)
 - (a) 5!

- (b) $\binom{5}{4}$ (c) 4^5 (d) 5^4 (e) none of these

6. Identify the shaded region in the following Venn diagram:

- (a) $(A \cup B)' \cap C$
- (b) $(A \cup B) \cap C$
- (c) $A \cap B \cap C$

- (d) $(A \cup B) \cap C'$
- (e) $(A \cap B) \cup C$

7. If **R** and **S** are finite subsets of a universal set U, such that

$$n(R') = 20$$
, $n(S) = 15$, $n(S \cup R') = 30$ and $n(U) = 35$

how many elements are there in $S \cap R$?

- (a) 20
- (b) 15
- (c) 5
- (d) 0
- (e) 10

- 8. A list of food preferences of 50 species of birds is included when you buy a bird feeder. The list states that 30 species like sunflower seed, 20 like millet, 10 like thistle seed. 10 like both sunflower seed and millet, 5 like both sunflower seed and thistle seed, 4 like both millet and thistle seed. Also, 2 species like all three of the above types of food. How many like none of the above types of food?
 - (a) 15
- (b) 10
- (c) 0
- (d) 7
- (e) 5

- 9. A set X has exactly 6 elements. How many distinct subsets of X have two or more elements?
 - (a) P(6,2)
- (b) 64 (c) $2^6 C(6,0) C(6,1)$ (d) C(6,2)

(e) 6! - 1! - 0!

- 10. A poker hand consists of five cards selected from a deck of 52 cards. How many poker hands consist of four hearts and a card from a different suit?
 - (a) $39 \cdot \binom{13}{4}$

- (b) $39 \cdot {52 \choose 4}$ (c) $48 \cdot {13 \choose 4}$

(d) $48 \bullet \binom{52}{4}$

(e) none of these

- 11. What is the coefficient of x^5y^3 in the expansion of $(x + y)^8$?
 - (a) 46
- (b) 1
- (c) 56
- (d) 8
- (e) 15

- 12. A sample (without replacement) of three apples is picked from a bag containing three Red Delicious apples and four Golden Delicious apples. How many such samples consist of exactly two Red Delicious and one Golden Delicious?
 - (a) $\binom{3}{2}$

- (b) $\binom{7}{3} 4$ (c) $\frac{\binom{7}{3}}{2!}$

(d) $\binom{3}{2} \cdot \binom{4}{1}$

(e) $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$

13. Here is a street map of Verona in 1452. Romeo is at **R**, Juliet is with her aunt at **J**. The house of Juliet's father is at **F**. In how many ways can Romeo reach Juliet without passing by her father's house, if he travels North and East only?

- (a) $\binom{11}{5} \binom{6}{3} \cdot \binom{5}{2}$
- (b) $\binom{11}{5}$ 36
- (c) $\binom{9}{3} \cdot \binom{5}{2}$

(d) $\binom{11}{6}$

(e) 5^6

14. Let $S = \{x, y, w, z\}$ be a sample space. Which of the following is a valid probability distribution for S?

(a)
$$Pr(x) = 0.7$$
 $Pr(y) = 0$

$$Pr(z) = 0.3$$
 $Pr(w) = 0.1$

(b)
$$Pr(x) = 0.6$$

$$Pr(y) = 0$$

$$Pr(z) = 0.3$$

$$Pr(w) = 0.1$$

(c)
$$Pr(x) = 0.5$$

$$Pr(y) = 0.1$$

$$Pr(z) = -0.3$$
 F

$$Pr(w) = 0.1$$

(d)
$$Pr(x) = 0.6$$

$$Pr(y) = 0.1$$

$$Pr(z) = 0.2$$

$$Pr(w) = 1.1$$

(e) none of the above

- **15.** How many subsets of the set {1, 2, 3, 4, 5} do not contain an even digit?

 - (a) $\binom{5}{2}$ (b) P(5,2) (c) $\frac{5!}{2!}$ (d) 24 (e) 8

- **16.** An experiment consists of observing the color and make of cars in a dealer's lot.
 - E be the event "the car is red"
 - F be the event "the car is a Chevrolet"
 - G be the event "the car is green or a Ford"
 - H be the event "the car is black or green"

Which of the following pair of events are mutually exclusive?

- (a) E and F
- (b) F and G
- (c) G and H

- (d) F and H
- (e) E and H

- 17. Suppose a red die and a green die are tossed and the numbers on the uppermost sides are observed. What is the probability that the numbers add up to 4?

- (a) $\frac{1}{36}$ (b) $\frac{2}{36}$ (c) $\frac{3}{36}$ (d) $\frac{4}{36}$ (e) $\frac{5}{36}$

- **18.** A foundation wishes to award one grant of \$100,000, two grants of \$10,000 each, three grants of \$5,000 each, and three grants of \$2,000 each. The list of recipients has been already narrowed to 9 recipients. In how many different ways can the awards be made?

- (a) 84 (b) 36 (c) 213 (d) 5,040 (e) 72

- **19.** A digit is selected at random from the digits {1, 2, 3, 4, 5, 6, 7, 8, 9}. What is the probability that the digit is either less than 4 or odd?

- (a) $\frac{2}{9}$ (b) $\frac{2}{3}$ (c) $\frac{1}{2}$ (d) $\frac{4}{9}$ (e) $\frac{4}{3}$

20. See Cover sheet (the one to be handed in) for a description of this question.