1. Let $\mathbf{U}=\{a, b, c, d, e, f, g, h, i, j\}$ and let $\mathbf{R}=\{a, c, e, g, i\} ; \quad \mathbf{S}=\{b, c, d, e, f, g\} ; \quad \mathbf{T}=\{a, c, d, f, h, i\}$

Which of the sets below is $\left(\mathbf{R} \cap \mathbf{T}^{\prime}\right) \cap S$?
(a) $\{c\}$
(b) $\{a, c, e, f\}$
(c) $\{\mathrm{d}, \mathrm{f}\}$
(d) $\{\mathrm{e}, \mathrm{g}\}$
(e) \varnothing
2. Consider the following set:

$$
\mathbf{U}=\{\text { all professors }\}
$$

$\mathbf{A}=\{$ female professors $\}$
$\mathbf{B}=\{$ professors under 40 years of age $\}$
$\mathbf{(A \cap B) ' ~ i s ~ t h e ~ s e t ~}$
(a) \{professors who are male or at least 40 years of age\}
(b) \{male professors who are at least 40 years of age\}
(c) \{professors who are male and under 40 years of age\}
(d) \{professors who are female or under 40 years of age\}
(e) none of the above
3. In which Venn diagram does the shaded portion represent $\mathbf{R}^{\prime} \cap(\mathbf{S} \cup \mathbf{T})$?
(a)

(b)

(c)

(d)

(e) none of the above
4. A survey of 100 bank customers revealed that 58 of them had a savings account, 63 of them had a checking account, 22 of them had a savings account and a loan, 16 of them had a checking account and a loan, 27 of them have only a checking account, 12 of them had a checking account, a savings account and a loan. Each customer had at least a savings account, or a checking account, or a loan. The number of customers who had a loan is
(a) 11
(b) 38
(c) 37
(d) 50
(e) none of these
5. An exam contains 5 multiple-choice questions, each having 4 possible answers. In how many different ways can the exam be answered? (Assume that every question must be answered.)
(a) 5 !
(b) $\binom{5}{4}$
(c) 4^{5}
(d) 5^{4}
(e) none of these
6. Identify the shaded region in the following Venn diagram:

(a) $(\mathbf{A} \cup B)^{\prime} \cap \mathbf{C}$
(b) $(\mathrm{A} \cup \mathrm{B}) \cap \mathrm{C}$
(c) $\mathbf{A} \cap \mathrm{B} \cap \mathbf{C}$
(d) $(\mathrm{A} \cup B) \cap \mathrm{C}^{\prime}$
(e) $(A \cap B) \cup C$
7. If \mathbf{R} and \mathbf{S} are finite subsets of a universal set U, such that

$$
n\left(R^{\prime}\right)=20, n(S)=15, n\left(S \cup R^{\prime}\right)=30 \text { and } n(U)=35
$$

how many elements are there in $\mathbf{S} \cap \mathbf{R}$?
(a) 20
(b) 15
(c) 5
(d) 0
(e) 10
8. A list of food preferences of 50 species of birds is included when you buy a bird feeder. The list states that 30 species like sunflower seed, 20 like millet, 10 like thistle seed. 10 like both sunflower seed and millet, 5 like both sunflower seed and thistle seed, 4 like both millet and thistle seed. Also, 2 species like all three of the above types of food. How many like none of the above types of food?
(a) 15
(b) 10
(c) 0
(d) 7
(e) 5
9. A set \mathbf{X} has exactly 6 elements. How many distinct subsets of \mathbf{X} have two or more elements?
(a) $\mathrm{P}(6,2)$
(b) 64
(c) $2^{6}-\mathrm{C}(6,0)-\mathrm{C}(6,1)$
(d) $\mathrm{C}(6,2)$
(e) $6!-1!-0$!
10. A poker hand consists of five cards selected from a deck of 52 cards. How many poker hands consist of four hearts and a card from a different suit?
(a) $39 \cdot\binom{13}{4}$
(b) $39 \cdot\binom{52}{4}$
(c) $48 \cdot\binom{13}{4}$
(d) $48 \cdot\binom{52}{4}$
(e) none of these
11. What is the coefficient of $\mathbf{x}^{5} \mathbf{y}^{3}$ in the expansion of $(x+y)^{8}$?
(a) 46
(b) 1
(c) 56
(d) 8
(e) 15
12. A sample (without replacement) of three apples is picked from a bag containing three Red Delicious apples and four Golden Delicious apples. How many such samples consist of exactly two Red Delicious and one Golden Delicious?
(a) $\binom{3}{2}$
(b) $\binom{7}{3}-4$
(c) $\frac{\binom{7}{3}}{2!}$
(d) $\binom{3}{2} \cdot\binom{4}{1}$
(e) $\binom{4}{1}$
13. Here is a street map of Verona in 1452 . Romeo is at \mathbf{R}, Juliet is with her aunt at \mathbf{J}. The house of Juliet's father is at F. In how many ways can Romeo reach Juliet without passing by her father's house, if he travels North and East only?

(a) $\binom{11}{5}-\binom{6}{3} \cdot\binom{5}{2}$
(b) $\binom{11}{5}-36$
(c) $\binom{9}{3} \cdot\binom{5}{2}$
(d) $\binom{11}{6}$
(e) 5^{6}
14. Let $S=\{x, y, w, z\}$ be a sample space. Which of the following is a valid probability distribution for \mathbf{S} ?
(a) $\operatorname{Pr}(\mathrm{x})=0.7 \quad \operatorname{Pr}(\mathrm{y})=0$
$\operatorname{Pr}(\mathrm{z})=0.3 \quad \operatorname{Pr}(\mathrm{w})=0.1$
(b) $\operatorname{Pr}(\mathrm{x})=0.6$
$\operatorname{Pr}(\mathrm{y})=0$
$\operatorname{Pr}(\mathrm{z})=0.3$
$\operatorname{Pr}(w)=0.1$
(c) $\operatorname{Pr}(\mathrm{x})=0.5$
$\operatorname{Pr}(\mathrm{y})=0.1$
$\operatorname{Pr}(\mathrm{z})=-0.3$
$\operatorname{Pr}(w)=0.1$
(d) $\operatorname{Pr}(\mathrm{x})=0.6 \quad \operatorname{Pr}(\mathrm{y})=0.1 \quad \operatorname{Pr}(\mathrm{z})=0.2 \quad \operatorname{Pr}(\mathrm{w})=1.1$
(e) none of the above
15. How many subsets of the set $\{1,2,3,4,5\}$ do not contain an even digit?
(a) $\binom{5}{2}$
(b) $\mathrm{P}(5,2)$
(c) $\frac{5!}{2!}$
(d) 24
(e) 8
16. An experiment consists of observing the color and make of cars in a dealer's lot. Let

E be the event "the car is red"
F be the event "the car is a Chevrolet"
G be the event "the car is green or a Ford"
H be the event "the car is black or green"
Which of the following pair of events are mutually exclusive?
(a) E and F
(b) F and G
(c) G and H
(d) F and H
(e) E and H
17. Suppose a red die and a green die are tossed and the numbers on the uppermost sides are observed. What is the probability that the numbers add up to 4 ?
(a) $\frac{1}{36}$
(b) $\frac{2}{36}$
(c) $\frac{3}{36}$
(d) $\frac{4}{36}$
(e) $\frac{5}{36}$
18. A foundation wishes to award one grant of $\$ 100,000$, two grants of $\$ 10,000$ each, three grants of \$ 5,000 each, and three grants of \$ 2,000 each. The list of recipients has been already narrowed to 9 recipients. In how many different ways can the awards be made?
(a) 84
(b) 36
(c) 213
(d) 5,040
(e) 72
19. A digit is selected at random from the digits $\{1,2,3,4,5,6,7,8,9\}$. What is the probability that the digit is either less than 4 or odd?
(a) $\frac{2}{9}$
(b) $\frac{2}{3}$
(c) $\frac{1}{2}$
(d) $\frac{4}{9}$
(e) $\frac{4}{3}$
20. See Cover sheet (the one to be handed in) for a description of this question.

