MATH 104 - EXAM I-Make-up

1. Let

$$
\begin{aligned}
& U=\{2,4,6,8,10,12,14,16\} \\
& A=\{2,4,6,8,10\} \\
& B=\{4,8,12,16\}
\end{aligned}
$$

Find $\left(A \cap B^{\prime}\right)^{\prime}$.
a. $\{12,16\}$
b. $\{2,6,10\}$
c. $\{2,4,6,8,10,12,16\}$
d. $\{4,8,12,14,16\}$
e. U
2. In a certain class, there are 15 female students. Suppose that 30 students in this class like to play basketball, amongst them are 10 females. If 5 males don't like to play basketball, how many students are there in the class?
a. 40
b. 35
c. 30
d. 45
e. 25
3. In a group of 34 people 19 like classical music, 15 like folk music, and 20 like jazz. Moreover, amongst them 9 like folk and classical music, 10 like folk and jazz music, and 8 like jazz and classical. Finally, 4 amongst them like all three categories. How many people in the above group like neither folk, nor classical nor jazz music.
a. 30
b. 7
c. 0
d. 3
e. 5
4. A chess club consisting of 20 members must choose a president, a secretary and a treasurer. If the posts cannot be shared, in how many different ways can this be done?
a. $\mathrm{P}(20,3)$
b. 20^{3}
c. $C(20,18)$
d. 3^{20}
e. $20+19+18$
5. A dance club consisting of 12 pairs must choose a committee of 5 members to write the statute of the club. If only one member can be selected from each pair, in how many ways can this be done?
a. $\mathrm{P}(12,5)$
b. $C(24,5)$
c. $P(12,5) \cdot 5^{2}$
d. $C(24,5) \cdot 2^{5}$
e. $C(12,5)$
. 2^{5}
6. How many five letter words, including nonsense words, use the letter "A" at least once?
a. 255
b. $5^{26}-5^{25}$
c. $26^{5}-25^{5}$
d. 5^{25}
e. $5 \cdot 25^{4}$
7. A hand consists of 5 cards from a standard deck of 52 cards. How many such hands have exactly three clubs?
a. $C(13,3)+C(39,2)$
b. $3 \cdot \mathrm{C}(39,2)$
c. 13^{3}
d. $C(13,3) \cdot C(49,2)$
e. $C(13,3) \cdot C(39,2)$
8. A math test consists of 20 true/false questions. If no answer is left blank, in how many different ways can the test be completed?
a. $C(20,2)$
b. 2^{20}
c. 20^{2}
d. $\frac{1}{2} \cdot P(20,2)$
e. 20 !
9. An urn contains balls numbered 1 through 12 , seven of them are green and five are yellow. In how many ways can one choose a sample of 5 balls, all of which are green?
a. $\mathrm{P}(7,5)$
b. $C(7,5)$
c. 12^{5}
d. 5^{12}
e. 7
10. A coin is thrown 12 times. How many sequences contain 3 or more heads?
a. $12^{2}-[C(12,0)+C(12,1)+C(12,2)]$
b. 3^{2}
c. $C(12,3)$
d. $2^{12}-[C(12.0)+C(12,1)+C(12,2)]$
e. 2^{3}
11. Three dice, colored red, green and blue are thrown. How many possible outcomes are there?
a. $C(6,4)$
b. $P(6,4)$
c. 6^{3}
d. 18 e. 3^{6}
12. If one can only move East and South, how many different paths from A to D via B and C are there in the diagram below.

a. $\mathrm{P}(11,5)$
b. $C(2,1)+C(6,3)+C(3,1)$
c. $P(2,1) \cdot P(6,3) \cdot P(3,1)$
d. $C(2,1) \cdot C(6,3) \cdot C(3,1)$
e. $C(11,5)$
13. Determine the first three terms in the expression $(x+y)^{13}$.
a. $x^{13}+13 x^{12} y+78 x^{11} y^{2}$
b. $x^{13}+13 x^{12} y+39 x^{11} y^{2}$
c. $x^{13}+13 x^{12} y+26 x^{11} y^{2}$
d. $x^{13}+13 x^{12}+78 x^{11}$
e. $x^{13}-13 x^{12} y+78 x^{11} y^{2}$
14. An experiment consists of first rolling a six-sided die, and then flipping a coin and observing the outcomes. How many elements are there in the sample space?
a. 6
b. 8
c. 12
d. 36
e. 64
15. Which of the columns of the following table can serve as a probability distribution for an experiment with the sample space $\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$?

	a.	b.	c.	d.	e.
s_{1}	.1	.3	1.2	1	.4
$\mathrm{~s}_{2}$.2	.3	-.3	1	.4
$\mathrm{~s}_{3}$.3	.3	0	0	.4
$\mathrm{~s}_{4}$.4	.3	.1	0	-.2

16. Let E and F be independent events and assume that
$\operatorname{Pr}(E)=\frac{1}{4}$ and $\operatorname{Pr}(F)=\frac{1}{2}$. Find $\operatorname{Pr}(E \cup F)$.
a. $\frac{3}{4}$
b. $\frac{5}{8}$
c. $\frac{1}{2}$
d. $\frac{1}{4}$
e. 1
17. A box contains 4 red balls and 2 green balls. Three balls are drawn at random without replacement. What is the probability that all balls drawn are of the same color?
a. $\frac{1}{2}$
b. $\frac{2}{3}$
c. $\frac{3}{4}$
d. $\frac{1}{5}$
e. $\frac{1}{3}$
18. Suppose that $\operatorname{Pr}(E)=0.6, \operatorname{Pr}(F)=0.5$ and $\operatorname{Pr}(E \cap F)=0.2$. Calculate $\operatorname{Pr}\left(E^{\prime} \mid F\right)$.
a. $\frac{1}{3}$
b. $\frac{3}{10}$
c. $\frac{1}{10}$
d. $\frac{3}{5}$
e. $\frac{2}{5}$
19. Only three horses are running in a race. The probability that Horse \#1 will win is $\frac{1}{2}$ and the probability that Horse \#2 will win is $\frac{1}{4}$. Find the odds that Horse \#3 will win.
a. 1 to 3
b. 3 to 1
c. 1 to 4
d. 4 to 1
e. 1 to 2
20. What is the probability of being dealt a flush in poker? (A flush consists of 5 cards all of the same suit.)
a. $\frac{5}{13}$
b. $\frac{4 \cdot\binom{13}{5}}{\binom{52}{5}}$
C. $\frac{1}{4}$
d. $\frac{\binom{13}{5}}{\binom{52}{5}}$
e. $\frac{P(13,5)}{\binom{52}{5}}$
