

Formulas that you might want to use.

1. If A is an absorbing stochastic matrix with

then the stable matrix of A is

I	S(I-R) -1
0	0

where the identity matrix I in $(I-R)^{-1}$ is chosen to be the same size as R.

2. Compound Interest.

Compound amount $F = (1 + i)^{n}P$

Present value

$$P = \frac{F}{(1+i)^n}$$

3. Simple interest.

Amount

$$A = (1 + nr)P$$

MATH 104 - EXAM III

- 1. Which of the following describes the equation of the line which passes through the point (1, 2) and is perpendicular to the line, 2y + x = 1.
- (a) y = 2x-2 (b) y = 2x (c) $y = \frac{-1}{2}x + \frac{5}{2}$ (d) $y = \frac{-1}{2}x + \frac{1}{2}$ (e) y = -2x + 3

- 2. The price of a gallon of gas at the "Gas'n go" station was \$1.00 on January 1, 1993 and \$1.10 on January 1, 1995. If the price varies linearly with time, what will a gallon of gas cost at "Gas'n go" on January 1, 2000?
 - (a) \$1.30
- (b) \$1.25
- (c) \$1.35
- (d) \$1.40
- (e) \$1.20

- Find the x intercept of the line that passes through (1,1) and has slope $\frac{1}{2}$. 3.

- (a) x = -1 (b) $x = \frac{-1}{2}$ (c) x = 0 (d) x = 1 (e) $x = \frac{1}{2}$

4. Which of the following statements is true about the solution to the following system of equations?

$$x + 2y = -1$$
$$x - y = 2$$

- (a) The value of x is -7 (b) The value of x is -1
- (c) The system has no solution

(d) There are infinitely many solutions

(e) The value of x is 1

5. The matrix 2 0 2 is pivoted around the circled entry. What is the entry in the

first row and third column of the resulting matrix?

- (a) 0
- (b) 3
- (c) 2
- (d) 1
- (e) 4

6. Which of the following statements is true about the solution to the following systems of equations?

$$\begin{cases} x + y = 2 \\ 2x - y = 1 \\ 3x + 2y = 4 \end{cases}$$

- (a) There is no solution
- (b) There are infinitely many solutions
- (c) The value of x is 1
- (d) The value of x is 0
- (e) The value of x is $\frac{7}{10}$

Given that $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ = $\begin{bmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}$, solve for y in the following system of linear equations 7.

$$x + z = 5$$

$$x + y = 3$$

$$x + y + z = 1$$

- (a) y = 7 (b) y = any number
- (c) There is no solution

w = 1, x = 3

- (d) y = -4 (e) y = -2

8. A system of linear equations has the augmented matrix

- What is the general solution to the system?
- (a) y = any numberw = any number

$$z = 4$$

(b) w = any number (c) y = 1, z = 2

$$z = 4 - 2w$$

(d) y = any number

$$w = any number$$

$$z = 4 - 2w$$

$$x = 5 - 2y$$

(e) y = any number

$$w = 1$$

- Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$. Find the entry in the 2nd row and first column of A^{-1} . 9.
 - (a) $\frac{-3}{5}$ (b) -3 (c) $\frac{3}{5}$ (d) $\frac{2}{5}$ (e) -2

Use the Gauss Jordon method to find the entry in the third row and second column of A⁻¹ if 10.

$$A = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

- (a) $\frac{1}{2}$ (b) $\frac{-1}{2}$
- (c) 0
- (d) 1
- (e) -1

11. Let $A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$

Find A + 2B

- (a) $\begin{bmatrix} 4 & 3 \\ 1 & 1 \\ 2 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & 2 \\ 1 & 1 \\ 2 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & 2 \\ 2 & 1 \\ 3 & 4 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & 3 \\ 1 & 1 \\ 2 & 5 \end{bmatrix}$ (e) $\begin{bmatrix} 4 & 3 \\ 2 & 1 \\ 3 & 5 \end{bmatrix}$

12. Find the entry in the second row and third column of the product,

$$\left[\begin{array}{ccc} 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right] \left[\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 1 & 0 & 2 \end{array}\right]$$

- (a) 3
- (b) 9

- (c) 8
- (d) 1
- (e) 1.2

13. Consider the matrices

(I)
$$\begin{bmatrix} \frac{1}{4} & \frac{7}{3} \\ \frac{3}{4} & \frac{-4}{3} \end{bmatrix}$$

$$(IV) \ \begin{bmatrix} .3 & 0 & 1 \\ .7 & .1 & 0 \\ 0 & .9 & 0 \end{bmatrix}$$

(V)
$$\begin{bmatrix} .2 & .4 \\ .1 & .4 \\ .7 & .2 \end{bmatrix}$$

Which of them are stochastic matrices

(a) all except I

- (b) II, III and IV only
- (c) II and IV only

(d) all except V

(e) none of the above

14. Determine the values of x and y such that the following matrix is a transition matrix of stochastic process

(a)
$$x = -0.3$$
, $y = 0.0$

(b)
$$x = 0.35, y = .7$$

(b)
$$x = 0.35$$
, $y = .7$ (c) $x = 1.3$, $y = .65$

(d)
$$x = .7, y = .35$$

(e)
$$x = -0.65$$
, $y = -0.3$

- 15. Assume 50% of women currently work. Of those who work, 70% of their daughters will work. Of those who don't work, only 40% of their daughters will work. Find the percentage of women in the next generation who work.
 - (a) 70%
- (b) 55%
- (c) 50%
- (d) 40%
- (e) none of the above

16. Consider regular matrix $\begin{bmatrix} .3 & .4 \\ .7 & .6 \end{bmatrix}$. In order to find its stable distribution, it is necessary to solve the system of equations.

(a)
$$\begin{cases} x + y = 1 \\ .3x + .4y = x \\ .7x + .6y = y \end{cases}$$

(b)
$$\begin{cases} x + y = 1 \\ .3x + .4y = 0 \\ .7x + .6y = 0 \end{cases}$$

(c)
$$\begin{cases} x + y = 0 \\ .3x + .4y = 1 \\ .7x + .6y = 1 \end{cases}$$

(d)
$$\begin{cases} x + y = 1 \\ .3x + .7y = x \\ .4x + .6y = y \end{cases}$$

(e) none of the above

17. The stable distribution for the regular stochastic matrix $\begin{bmatrix} .4 & .2 \\ .6 & .8 \end{bmatrix}$ is

(b)
$$\begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \end{bmatrix}$$

(c)
$$\begin{bmatrix} \frac{1}{4} \\ \frac{3}{4} \end{bmatrix}$$

(d)
$$\begin{bmatrix} \frac{3}{4} & \frac{3}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

(e) none of the above

18. The stable matrix for the absorbing matrix
$$\begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{8} \\ 0 & 0 & \frac{3}{8} \end{bmatrix}$$
 is

(a)
$$\begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{8} \\ 0 & 0 & 0 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{8} \\ 0 & 0 & 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{8} \\ 0 & 0 & \frac{3}{8} \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 & \frac{4}{5} \\ 0 & 1 & \frac{1}{5} \\ 0 & 0 & \frac{3}{8} \end{bmatrix}$

(c)
$$\begin{bmatrix} 1 & 0 & \frac{4}{5} \\ 1 & 0 & \frac{1}{5} \\ 0 & 1 & \frac{3}{8} \end{bmatrix}$$

(d)
$$\begin{bmatrix} 1 & 0 & \frac{1}{5} \\ 0 & 1 & \frac{4}{5} \\ 0 & 0 & 0 \end{bmatrix}$$

(e) none of the above

19. What is the compound amount after 2 years of \$100 deposited at 10% interest compounded annually?

- (a) \$121.00
- (b) \$110.00
- (c) \$120.00
- (d) \$121.55

(e) none of the above

20. How many months are required for \$2500.00 to grow to \$3300 at 16% simple interest?

(a) 18

(b) 20

(c) 22

(d) 24

(e) none of the above