Formulas that you might want to use.

1. If A is an absorbing stochastic matrix with

$$
A=\left[\begin{array}{c|c}
\mathrm{I} & \mathrm{~S} \\
\hline 0 & \mathrm{R}
\end{array}\right]
$$

then the stable matrix of A is
$\left[\begin{array}{c|c}I & S(I-R)^{-1} \\ \hline 0 & 0\end{array}\right]$
where the identity matrix I in $(I-R)^{-1}$ is chosen to be the same size as R.
2. Compound Interest.

Compound amount $F=(1+i)^{n} P$

Present value

$$
P=\frac{F}{(1+i)^{n}}
$$

3. Simple interest.

Amount

$$
\mathrm{A}=(1+\mathrm{nr}) \mathrm{P}
$$

MATH 104 - EXAM III

1. Which of the following describes the equation of the line which passes through the point $(1,2)$ and is perpendicular to the line, $2 y+x=1$.
(a) $y=2 x-2$
(b) $y=2 x$
(c) $y=\frac{-1}{2} x+\frac{5}{2}$
(d) $y=\frac{-1}{2} x+\frac{1}{2}$
(e) $y=-2 x+3$
2. The price of a gallon of gas at the "Gas'n go" station was $\$ 1.00$ on January 1, 1993 and $\$ 1.10$ on January 1, 1995. If the price varies linearly with time, what will a gallon of gas cost at "Gas'n go" on January 1, 2000 ?
(a) $\$ 1.30$
(b) $\$ 1.25$
(c) $\$ 1.35$
(d) $\$ 1.40$
(e) $\$ 1.20$
3. Find the x intercept of the line that passes through $(1,1)$ and has slope $\frac{1}{2}$.
(a) $x=-1$
(b) $x=\frac{-1}{2}$
(c) $x=0$
(d) $x=1$
(e) $x=\frac{1}{2}$
4. Which of the following statements is true about the solution to the following system of equations?

$$
\begin{gathered}
x+2 y=-1 \\
x-y=2
\end{gathered}
$$

(a) The value of x is -7
(b) The value of x is -1
(c) The system has no solution
(d) There are infinitely many solutions
(e) The value of x is 1
5. The matrix $\left[\begin{array}{lll}1 & 1 & 3 \\ 2 & 0 & 2 \\ 1 & 1 & 1\end{array}\right]$ is pivoted around the circled entry. What is the entry in the first row and third column of the resulting matrix?
(a) 0
(b) 3
(c) 2
(d) 1
(e) 4
6. Which of the following statements is true about the solution to the following systems of equations?

$$
\left\{\begin{array}{l}
x+y=2 \\
2 x-y=1 \\
3 x+2 y=4
\end{array}\right.
$$

(a) There is no solution
(b) There are infinitely many solutions
(c) The value of x is 1
(d) The value of x is 0
(e) The value of x is $\frac{7}{10}$
7. Given that $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]^{-1}=\left[\begin{array}{rrr}1 & 1 & -1 \\ -1 & 0 & 1 \\ 0 & -1 & 1\end{array}\right]$, solve for y in the following system of linear equations

$$
\begin{gathered}
x+z=5 \\
x+y=3 \\
x+y+z=1
\end{gathered}
$$

(a) $y=7$
(b) $\mathrm{y}=$ any number
(c) There is no solution
(d) $y=-4$
(e) $y=-2$
8. A system of linear equations has the augmented matrix

$$
\left[\begin{array}{cccc|c}
x & y & z & w & \\
1 & 2 & 0 & 0 & 5 \\
0 & 0 & 1 & 2 & 4
\end{array}\right]
$$

What is the general solution to the system?
(a) $y=$ any number
w = any number
$\mathrm{x}=5$
z = 4
(b) w = any number
$z=4-2 w$
$y=1$
$x=3$
(d) $\mathrm{y}=$ any number
$w=$ any number
$z=4-2 w$
$x=5-2 y$
(e) $\mathrm{y}=$ any number
$w=1$
9. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right]$. Find the entry in the 2nd row and first column of A^{-1}.
(a) $\frac{-3}{5}$
(b) -3
(c) $\frac{3}{5}$
(d) $\frac{2}{5}$
(e) -2
10. Use the Gauss Jordon method to find the entry in the third row and second column of A^{-1} if

$$
A=\left[\begin{array}{rrr}
1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

(a) $\frac{1}{2}$
(b) $\frac{-1}{2}$
(c) 0
(d) 1
(e) -1
11. Let $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 1 \\ 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 1 & 1\end{array}\right]$

Find $A+2 B$
(a) $\left[\begin{array}{ll}4 & 3 \\ 1 & 1 \\ 2 & 4\end{array}\right]$
(b) $\left[\begin{array}{ll}3 & 2 \\ 1 & 1 \\ 2 & 4\end{array}\right]$
(c) $\left[\begin{array}{ll}4 & 2 \\ 2 & 1 \\ 3 & 4\end{array}\right]$
(d) $\left[\begin{array}{ll}3 & 3 \\ 1 & 1 \\ 2 & 5\end{array}\right]$
(e) $\left[\begin{array}{ll}4 & 3 \\ 2 & 1 \\ 3 & 5\end{array}\right]$
12. Find the entry in the second row and third column of the product,

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 3 \\
1 & 0 & 2
\end{array}\right]
$$

(a) 3
(b) 9
(c) 8
(d) 1
(e) 1.2
13. Consider the matrices
(I) $\left[\begin{array}{cc}\frac{1}{4} & \frac{7}{3} \\ \frac{3}{4} & \frac{-4}{3}\end{array}\right]$
(II) $\left[\begin{array}{ll}.6 & 1 \\ .4 & 0\end{array}\right]$
(III) $\left[\begin{array}{ll}.4 & .8 \\ .2 & .2\end{array}\right]$
(IV) $\left[\begin{array}{lll}.3 & 0 & 1 \\ .7 & .1 & 0 \\ 0 & .9 & 0\end{array}\right]$
(V) $\left[\begin{array}{ll}.2 & .4 \\ .1 & .4 \\ .7 & .2\end{array}\right]$

Which of them are stochastic matrices
(a) all except I
(b) II, III and IV only
(c) II and IV only
(d) all except V
(e) none of the above
14. Determine the values of x and y such that the following matrix is a transition matrix of stochastic process

$$
\left[\begin{array}{cc}
.3 & y \\
x & 0.65
\end{array}\right]
$$

(a) $x=-0.3, y=0.0$
(b) $x=0.35, y=.7$
(c) $x=1.3, y=.65$
(d) $x=.7, y=.35$
(e) $x=-0.65, y=-0.3$
15. Assume 50% of women currently work. Of those who work, 70% of their daughters will work. Of those who don't work, only 40% of their daughters will work. Find the percentage of women in the next generation who work.
(a) 70%
(b) 55%
(c) 50%
(d) 40%
(e) none of the above
16. Consider regular matrix $\left[\begin{array}{cc}.3 & .4 \\ .7 & .6\end{array}\right]$. In order to find its stable distribution, it is necessary to solve the system of equations.
(a) $\left\{\begin{array}{l}x+y=1 \\ .3 x+.4 y=x \\ .7 x+.6 y=y\end{array}\right.$
(b) $\left\{\begin{array}{l}x+y=1 \\ .3 x+.4 y=0 \\ .7 x+.6 y=0\end{array}\right.$
(c) $\left\{\begin{array}{l}x+y=0 \\ .3 x+.4 y=1 \\ .7 x+.6 y=1\end{array}\right.$
(d) $\left\{\begin{array}{l}x+y=1 \\ .3 x+.7 y=x \\ .4 x+.6 y=y\end{array}\right.$
(e) none of the above
17. The stable distribution for the regular stochastic matrix $\left[\begin{array}{ll}.4 & .2 \\ .6 & .8\end{array}\right]$ is
(a) $\left[\begin{array}{l}\frac{2}{3} \\ \frac{1}{3}\end{array}\right]$
(b) $\left[\begin{array}{l}\frac{1}{3} \\ \frac{2}{3}\end{array}\right]$
(c) $\left[\begin{array}{l}\frac{1}{4} \\ \frac{3}{4}\end{array}\right]$
(d) $\left[\begin{array}{ll}\frac{3}{4} & \frac{3}{4} \\ \frac{1}{4} & \frac{1}{4}\end{array}\right]$
(e) none of the above
18. The stable matrix for the absorbing matrix $\left[\begin{array}{ccc}1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{8} \\ 0 & 0 & \frac{3}{8}\end{array}\right]$ is
(a) $\left[\begin{array}{lll}1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{8} \\ 0 & 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{8} \\ 0 & 0 & \frac{3}{8}\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 0 & \frac{4}{5} \\ 0 & 1 & \frac{1}{5} \\ 0 & 0 & \frac{3}{8}\end{array}\right]$
(d) $\left[\begin{array}{lll}1 & 0 & \frac{1}{5} \\ 0 & 1 & \frac{4}{5} \\ 0 & 0 & 0\end{array}\right]$
(e) none of the above
19. What is the compound amount after 2 years of $\$ 100$ deposited at 10% interest compounded annually?
(a) $\$ 121.00$
(b) $\$ 110.00$
(c) $\$ 120.00$
(d) $\$ 121.55$
(e) none of the above
20. How many months are required for $\$ 2500.00$ to grow to $\$ 3300$ at 16% simple interest?
(a) 18
(b) 20
(c) 22
(d) 24
(e) none of the above

