1. Let $\mathbf{U}=\{a, b, c, d, e, f, g, h, i, j\}$ and let
$\mathbf{R}=\{a, c, e, g, i\} ; \quad \mathbf{S}=\{b, c, d, e, f\} ; \quad \mathbf{T}=\{a, b, f, g, h\}$
Which of the sets below is $\left(\mathbf{R}^{\prime} \cap \mathbf{S}\right) \cup \mathbf{T}$?
(a) $\{c, e, f\}$
(b) $\{b, d, f\}$
(c) $\{a, b, d, f, g, h\}$
(d) $\{\mathrm{e}, \mathrm{g}\}$
(e) \varnothing
2. Consider the following set:
$\mathbf{U}=\{$ all students $\}$
$\mathbf{A}=$ \{all female students $\}$
$\mathbf{B}=\{$ all students under 21 years of age $\}$
$(\mathbf{A} \cup \mathbf{B})^{\prime}$ is the set
(a) \{students who are male or at least 21 years old\}
(b) \{male students who are at least 21 years old \}
(c) $\{$ male students who are under 21 years old\}
(d) \{female students who are under 21 years old\}
(e) \{students who are female or under 21 years old\}
3. Identify the shaded region in the following Venn diagram:

(a) $\left(\mathbf{A} \cap \mathbf{B}^{\prime}\right) \cap \mathbf{C}$
(b) $(A \cup B) \cup C$
(c) $\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}$
(d) $(B \cup C) \cap A^{\prime}$
(e) $(A \cup C) \cap B$
4. A survey of 120 bank customers revealed that 70 had a checking account, 53 had a savings account, 18 had a savings account and a loan, 17 had a checking account and a loan, 48 had only a checking account and 10 had a checking account, a savings account and a loan. Each customer had at least a savings account, or a checking account, or a loan. The number of customers who had a loan is
(a) 37
(b) 34
(c) 30
(d) 15
(e) 14
5. If \mathbf{R} and \mathbf{S} are finite subsets of a universal set \mathbf{U}, such that

$$
n\left(R^{\prime}\right)=20, n(S)=15, n\left(S \cup R^{\prime}\right)=25 \text { and } n(U)=40
$$

how many elements are there in $\mathbf{S} \cap \mathbf{R}$?
(a) 0
(b) 5
(c) 10
(d) 20
(e) 15
6. An exam contains 19 multiple-choice questions, each having 5 possible answers. In how many different ways can the exam be answered? (Assume that every question must be answered.)
(a) 19 !
(b) $\binom{19}{5}$
(c) 95
(d) 19^{5}
(e) 5^{19}

7 In which Venn diagram does the shaded portion represent $\left(\mathbf{R}^{\prime} \cup S\right) \cap T$?
(a)

(b)

(c)

(d)

(e) none of the above
8. A set \mathbf{X} has exactly 7 elements. How many distinct subsets of \mathbf{X} have at most two elements?
(a) $\mathrm{P}(7,2)$
(b) 2^{7}
(c) $2^{7}-\mathrm{C}(7,0)-\mathrm{C}(7,1)-\mathrm{C}(7,2)$
(d) $\mathrm{C}(7,2)$
(e) 29
9. How many 3-digit numbers can be formed using the digits

$$
\{1,2,3,4,5,6,7,8\}
$$

if no repetitions are allowed?
(a) $\mathrm{P}(8,3)$
(b) $\mathrm{P}(9,3)$
(c) $\mathrm{C}(8,3)$
(d) 3^{8}
(e) 8 !
10. A list of food preferences of 60 species of birds is included when you buy a bird feeder. The list states that 35 species like sunflower seed, 25 like millet, 10 like thistle seed. 15 like both sunflower seed and millet, 5 like both sunflower seed and thistle seed, while 4 like both millet and thistle seed. Further, 3 species like all three of the above types of food. How many like none of the above types of food?
(a) 7
(b) 8
(c) 9
(d) 10
(e) 11
11. What is the coefficient of $\mathbf{x}^{3} \mathbf{y}^{7}$ in the expansion of $(x+y)^{\mathbf{1 0}}$?
(a) 56
(b) 84
(c) 90
(d) 220
(e) 120
12. A bag contains 10 blue marbles and 8 red marbles. In how many ways can five marbles be chosen from the bag, without replacement, so that 3 of the chosen marbles are blue and 2 are red?
(a) $\binom{3}{2}$
(b) $\binom{18}{5}$
(c) $10 \cdot 8$
(d) $\binom{10}{3} \cdot\binom{8}{2}$
(e) $\mathrm{P}(18,5)$
13. Which of the following is a valid probability distribution for the sample space \mathbf{S} $=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$?
(a) $\operatorname{Pr}(\mathrm{x})=0.7 \quad \operatorname{Pr}(\mathrm{y})=0.0 \quad \operatorname{Pr}(\mathrm{z})=0.2$
(b) $\operatorname{Pr}(\mathrm{x})=0.2 \quad \operatorname{Pr}(\mathrm{y})=0.2 \quad \operatorname{Pr}(\mathrm{z})=0.6$
(c) $\operatorname{Pr}(\mathrm{x})=0.8 \quad \operatorname{Pr}(\mathrm{y})=0.4 \quad \operatorname{Pr}(\mathrm{z})=-0.2$
(d) $\operatorname{Pr}(\mathrm{x})=0.6 \quad \operatorname{Pr}(\mathrm{y})=0.1 \quad \operatorname{Pr}(\mathrm{z})=0.2$
(e) none of the above
14. Here is a street map of Verona in 1452. Romeo is at \mathbf{R}, Juliet is with her aunt at \mathbf{J}. The house of Juliet's father is at \mathbf{F}. In how many ways can Romeo reach Juliet, making sure first that her father is asleep in his house, if Romeo travels North and East only?

(a) $\binom{11}{5}-\binom{6}{3} \cdot\binom{5}{2}$
(b) $\binom{11}{5}$
(c) $\binom{6}{3} \cdot\binom{5}{2}$
(d) $\binom{11}{6}$
(e) 5^{6}
15. How many subsets of the set $\{1,2,3,4,5,6,7\}$ contain no even digit?
(a) $\binom{7}{4}$
(b) $\mathrm{P}(7,3)$
(c) $\frac{7!}{4!}$
(d) 2^{4}
(e) 8
16. A red die and a green die are tossed and the numbers on the uppermost sides are observed. What is the probability that the numbers add up to 6 ?
(a) $\frac{5}{36}$
(b) $\frac{8}{36}$
(c) $\frac{7}{36}$
(d) $\frac{9}{36}$
(e) $\frac{6}{36}$
17. A foundation wishes to award one grant of $\$ 100,000$, three grants of $\$ 10,000$ each and four grants of $\$ 5,000$ each, and three grants of $\$ 2,000$ each. The list of recipients has been already narrowed to 8 recipients. In how many different ways can the awards be made?
(a) 84
(b) 280
(c) 5,040
(d) 8 !
(e) 200
18. An experiment consists of observing the color and make of cars in a dealer's lot. Let

E be the event "the car is red"
F be the event "the car is a Honda"
G be the event "the car is white or a Toyota"
H be the event "the car is a Toyota or a Ford"
Which of the following pair of events are mutually exclusive?
(a) E and F
(b) E and G
(c) F and H
(d) G and H
(e) F and G
19. A digit is selected at random from the digits $\{1,2,3,4,5,6,7,8,9\}$. What is the probability that the digit is even or greater than 6 ?
(a) $\frac{2}{3}$
(b) $\frac{4}{9}$
(c) $\frac{1}{2}$
(d) $\frac{5}{9}$
(e) $\frac{4}{3}$
20. See Cover sheet (the one to be handed in) for a description of this question.

