1. Let $U = \{a, b, c, d, e, f, g, h, i, j\}$ and let $R = \{a, c, e, g, i\}$; $S = \{b, c, d, e, f\}$; $T = \{a, b, f, g, h\}$

Which of the sets below is $(R' \cap S) \cup T$?

- (a) {c, e, f}
- (b) {b, d, f}
- (c) {a, b, d, f, g, h} (d) {e, g}

(e) Ø

2. Consider the following set:

U = {all students}

A = {all female students}

B = {all students under 21 years of age}

 $(A \cup B)'$ is the set

- (a) {students who are male or at least 21 years old}
- (b) {male students who are at least 21 years old}
- (c) {male students who are under 21 years old}
- (d) {female students who are under 21 years old}
- (e) {students who are female or under 21 years old}

3. Identify the shaded region in the following Venn diagram:

- (a) $(A \cap B') \cap C$
- (b) (A ∪ B) ∪ C
- (c) $A \cap B \cap C$

- (d) $(B \cup C) \cap A'$
- (e) $(A \cup C) \cap B$

- 4. A survey of 120 bank customers revealed that 70 had a checking account, 53 had a savings account, 18 had a savings account and a loan, 17 had a checking account and a loan, 48 had only a checking account and 10 had a checking account, a savings account and a loan. Each customer had at least a savings account, or a checking account, or a loan. The number of customers who had a loan is
 - (a) 37
- (b) 34
- (c) 30
- (d) 15
- (e) 14

5. If **R** and **S** are finite subsets of a universal set **U**, such that

$$n(R') = 20$$
, $n(S) = 15$, $n(S \cup R') = 25$ and $n(U) = 40$

how many elements are there in $S \cap R$?

- (a) 0
- (b) 5
- (c) 10
- (d) 20
- (e) 15

- **6.** An exam contains 19 multiple-choice questions, each having 5 possible answers. In how many different ways can the exam be answered? (Assume that every question must be answered.)

 - (a) 19! (b) $\binom{19}{5}$ (c) 95 (d) 19^5 (e) 5^{19}

7 In which Venn diagram does the shaded portion represent $(R' \cup S) \cap T$?

(e) none of the above

8. A set **X** has exactly 7 elements. How many distinct subsets of **X** have at most two elements?

- (a) P(7,2)
- (b) 2^7 (c) $2^7 C(7,0) C(7,1) C(7,2)$ (d) C(7,2)

(e) 29

9.	How many	3-digit nu	ambers can	be for	med using	the 2	digits
<i>-</i>	110 1110111	2 415111	anno en can	20101	THE CHARLES	7 410	210

{ 1, 2, 3, 4, 5, 6, 7, 8 }

if no repetitions are allowed?

- (a) P(8,3)
- (b) P(9,3)
- (c) C(8,3) (d) 3^8
- (e) 8!

- 10. A list of food preferences of 60 species of birds is included when you buy a bird feeder. The list states that 35 species like sunflower seed, 25 like millet, 10 like thistle seed. 15 like both sunflower seed and millet, 5 like both sunflower seed and thistle seed, while 4 like both millet and thistle seed. Further, 3 species like all three of the above types of food. How many like none of the above types of food?
 - (a) 7
- (b) 8
- (c) 9
- (d) 10
- (e) 11

- 11. What is the coefficient of x^3y^7 in the expansion of $(x + y)^{10}$?
 - (a) 56
- (b) 84
- (c) 90
- (d) 220
- (e) 120

- **12.** A bag contains 10 blue marbles and 8 red marbles. In how many ways can five marbles be chosen from the bag, without replacement, so that 3 of the chosen marbles are blue and 2 are red?
 - (a) $\binom{3}{2}$

- (b) $\binom{18}{5}$
- (c) 10• 8

(d) $\binom{10}{3} \cdot \binom{8}{2}$

(e) P(18,5)

13. Which of the following is a valid probability distribution for the sample space $S = \{x, y, z\}$?

(a)
$$Pr(x) = 0.7$$
 $Pr(y) = 0.0$ $Pr(z) = 0.2$

(b)
$$Pr(x) = 0.2$$
 $Pr(y) = 0.2$ $Pr(z) = 0.6$

(c)
$$Pr(x) = 0.8$$
 $Pr(y) = 0.4$ $Pr(z) = -0.2$

(d)
$$Pr(x) = 0.6$$
 $Pr(y) = 0.1$ $Pr(z) = 0.2$

(e) none of the above

14. Here is a street map of Verona in 1452. Romeo is at **R**, Juliet is with her aunt at **J**. The house of Juliet's father is at **F**. In how many ways can Romeo reach Juliet, making sure first that her father is asleep in his house, if Romeo travels North and East only?

- (a) $\binom{11}{5} \binom{6}{3} \cdot \binom{5}{2}$
- (b) $\binom{11}{5}$
- (c) $\binom{6}{3} \cdot \binom{5}{2}$

(d) $\binom{11}{6}$

(e) 5^6

- **15.** How many subsets of the set {1, 2, 3, 4, 5, 6, 7} contain no even digit?

 - (a) $\binom{7}{4}$ (b) P(7,3) (c) $\frac{7!}{4!}$ (d) 2^4 (e) 8

- 16. A red die and a green die are tossed and the numbers on the uppermost sides are observed. What is the probability that the numbers add up to 6?

- (a) $\frac{5}{36}$ (b) $\frac{8}{36}$ (c) $\frac{7}{36}$ (d) $\frac{9}{36}$ (e) $\frac{6}{36}$

(c) 5,040

- **18.** An experiment consists of observing the color and make of cars in a dealer's lot. Let
 - E be the event "the car is red"
 - F be the event "the car is a Honda"

(b) 280

- G be the event "the car is white or a Toyota"
- H be the event "the car is a Toyota or a Ford"

Which of the following pair of events are mutually exclusive?

(a) E and F

(a) 84

- (b) E and G
- (c) F and H

(d) 8!

(e) 200

- (d) G and H
- (e) F and G

- **19.** A digit is selected at random from the digits {1, 2, 3, 4, 5, 6, 7, 8, 9 } . What is the probability that the digit is even or greater than 6?

- (a) $\frac{2}{3}$ (b) $\frac{4}{9}$ (c) $\frac{1}{2}$ (d) $\frac{5}{9}$ (e) $\frac{4}{3}$

20. See Cover sheet (the one to be handed in) for a description of this question.