Math 104
Midterm 3, April 7

1. Each of three people randomly chooses one of three calculus sections to take $(A, B$, or C).
(a) [10 points] What is the probability that they all choose the same one?
(b) $[10$ points $]$ What is the probability that they each choose a different section?
2. Let S be a sample space and E and F events associated with S. Suppose that $\operatorname{Pr}(E)=0.5, \operatorname{Pr}(F)=0.3$, and $\operatorname{Pr}(E \cap F)=0.1$.
(a) [5 points] Calculate $\operatorname{Pr}(E \mid F)$ and $\operatorname{Pr}(F \mid E)$.
(b)[5 points] Are E and F independent events? Explain.
(c) Calculate $\operatorname{Pr}\left(E \mid F^{\prime}\right)$.
(d) Calculate $\operatorname{Pr}\left(E^{\prime} \mid F^{\prime}\right)$.
3. (a)[5 points] State De Morgan's Laws.
(b)[5 points] State Complement Rule.
(c)[5 points] State Inclusion-Exclusion Principle (the one for probability, not for set and counting).
(d)[5 points] Show that if events E and F are indepedent of each other, so are E^{\prime} and F^{\prime}.
4. (a)[5 points] State Product Rule.
(b) $[5$ points $]$ Suppose that E and F are two indepedent events and $\operatorname{Pr}(E)=0.3$. What is $\operatorname{Pr}(E \mid F)$?
(c)[5 points] Suppose that E and F are two identical events, namely $E=F$. What is $\operatorname{Pr}(E \mid F) ?$
(d)[5 points] Suppose that F and F are two complementary events, namely $E=F^{\prime}$. What is $\operatorname{Pr}(E \mid F)$?
5. Suppose that a random variable X has probability distribution given by the following table:

k	$\operatorname{Pr}(X=k)$
-1	0.2
0	0.3
1	0.1
2	0.4

(a)[5 points] What are the possible values of the random variable X ?
(b)[5 points] What are the possible values of the random variable X^{2} ?
(c)[5 points] Determine the probability distribution of the random variable X^{2}.
(d)[5 points] Draw the histogram of the probability distribution of X^{2}.

