105 Test 3 F-94

- Solve the equation $2^{6-3x} = 8$. 1.
 - a. 1
- b. -1 c. 2 d. 1 e. 0

2. Use implicit differentiation to find the slope of the curve

$$2xy^2 - 3y = 2$$
 at the point (1, 2).

- a. $-\frac{8}{5}$ b. $-\frac{8}{3}$ c. $-\frac{3}{8}$ d. $\frac{5}{8}$ e. $-\frac{5}{8}$

3. Let x(t) and y(t) be functions of t related by the equation

$$x^3 + y^3 = 2 .$$

When x=1, y=1 and $\frac{dx}{dt}$ = 2 what is $\frac{dy}{dt}$?

- a. -2 b. -1 c. 0
- d. 1
- e. 2

4.

Find the derivative of
$$f(x) = \frac{e^x - 1}{e^x + 1} \qquad \text{at } x = 0 .$$

at
$$x = 0$$

- a. $\frac{1}{2}$ b. $\frac{1}{4}$ c. 2 d. -4 e. $-\frac{1}{2}$

5. If
$$y = \frac{1}{2} u^2 + 2 u^{\frac{1}{2}}$$
 and $u = 1 - 2x$ use the chain rule to compute $\frac{dy}{dx}$.

a.
$$-2 \left\{ (1-2x) + \frac{1}{\sqrt{1-2x}} \right\}$$

b. -2
$$\left\{ (1-2x) - \frac{2}{\sqrt{1-2x}} \right\}$$

c.
$$-2(1-2x) + \frac{1}{\sqrt{1-2x}}$$

d.
$$-\frac{1}{2}(1-2x) + \frac{2}{\sqrt{1-2x}}$$

e.
$$(1 - 2x) + \sqrt{1 - 2x}$$

Find the equation of the tangent line to the curve $y = e^x$ at the point (1, e). 6.

$$a. y = ex$$

b.
$$ey + x = 0$$

a.
$$y = ex$$
 b. $ey + x = 0$ c. $y = e(x - 1)$ d. $y = ex + 1$

d.
$$y = ex + 1$$

e.
$$ey = x + 1$$

7. Find the derivative of
$$f(x) = 3x e^{x^2}$$
.

a
$$(6x^2 + 3) e^{x^2}$$

b.
$$(3x^2 + 6) e^{x^2}$$

a.
$$(6x^2 + 3) e^{x^2}$$
 b. $(3x^2 + 6) e^{x^2}$ c. $(3 + 2x + 6x^2) e^{x^2}$

d.
$$(x^2 + 2x + 6) e^{x^2}$$
 e. $(3x^2 - 2) e^{x^2}$

e.
$$(3x^2 - 2) e^{x^2}$$

If y is a function of x satisfying y' - 2y = 0 and derivative y'(0) = 38. then find y.

a.
$$y = \frac{3}{2} e^{2x}$$

 e^{2x}

a.
$$y = \frac{3}{2} e^{2x}$$
 b. $y = \frac{3}{2} e^{-2x}$ c. $y = \frac{2}{3} e^{-2x}$ d. $y = \frac{2}{3} e^{2x}$ e. $y = \frac{1}{2}$

c.
$$y = \frac{2}{3} e^{-2x}$$

d.
$$y = \frac{2}{3} e^{2x}$$

e.
$$y = \frac{1}{2}$$

Solve the equation ln (ln 3x) = 0. 9.

c.
$$e^{-3}$$

a.
$$\frac{e}{3}$$
 b. e^3 c. e^{-3} d. $-\frac{e}{3}$

e.
$$\frac{1}{3}$$

Solve the equation $\ln(x^2 + 2x + 2) = 0$. 10.

$$\ln(x^2 + 2x + 2) = 0.$$

a. -1 b. -2 c. 0 d. 2 e. 1

11. Find the derivative of $f(x) = \ln((x+1)^{100})$.

a. $\frac{100}{x+1}$ b. $\frac{99}{x+1}$ c. 100(x+1) d. 99(x+1) e. $100 \ln (x+1)^{99}$

- The function $f(x) = \frac{\ln x}{x}$, defined for x > 0, has one relative extreme point. Find the x – ordinate of this point.

- a. e b. $\frac{1}{e}$ c. e 1 d. $\frac{1}{e-1}$ e. ln 2

Find the derivative of $f(x) = \ln \left(\frac{x}{x-3}\right)$.

a.
$$\frac{1}{x} - \frac{1}{x-3}$$
 b. $\frac{1}{x-3} - \frac{1}{x}$ c. $\frac{-3}{(x-3)^2}$ d. $\frac{x-3}{x}$ e.

b.
$$\frac{1}{x-3} - \frac{1}{x}$$

c.
$$\frac{-3}{(x-3)^2}$$

d.
$$\frac{x-3}{x}$$

14. Find the derivative of
$$f(x) = \ln(x^3(x+1)^4)$$
.

$$\frac{1}{(x+1)^4}$$

a.
$$\frac{3}{x} + \frac{4}{x+1}$$

b.
$$\frac{3}{x} + \frac{12}{x+1}$$

c.
$$\frac{1}{x^3} +$$

d.
$$3x + 4(x + 1)$$
 e. $x^3 + (x + 1)^4$.

e.
$$x^3 + (x + 1)^4$$
.

Find the derivative of the composite function $f \circ g(x)$ where

$$f(x) = \frac{x^5}{5} + \frac{x^3}{3}$$
 and $g(x) = \sqrt{x}$.

a.
$$\frac{x^2 + x}{2\sqrt{x}}$$

b.
$$\frac{x^4 + x^2}{2\sqrt{x}}$$

a.
$$\frac{x^2 + x}{2\sqrt{x}}$$
 b. $\frac{x^4 + x^2}{2\sqrt{x}}$ c. $\frac{5x^4 + 3x^2}{2\sqrt{x}}$

d.
$$\frac{x^4 + x}{2\sqrt{x}}$$

e.
$$\frac{x^2 + 2x}{2\sqrt{x}}$$

A population of bacteria is given by $P(t) = 10 e^{kt}$ where t denotes time measured in seconds and k is some constant. If after 10 seconds the population is 30 cells find the value of k.

a.
$$\frac{\ln 3}{10}$$

b.
$$\frac{10}{\ln 3}$$

c.
$$\frac{\ln 10}{3}$$

a.
$$\frac{\ln 3}{10}$$
 b. $\frac{10}{\ln 3}$ c. $\frac{\ln 10}{3}$ d. $\ln \frac{3}{10}$ e. $\ln 3$

17. If $P(t) = 500 e^{\frac{t}{100}}$ find for what t the value of P is 1000.

- a. 100 ln 2 b. 2 ln 100 c. ln 200
- d. 200 e. 5 ln 2

- 18. The growth rate of a certain cell culture is proportional to its size. In 6 hours the cell population grows from one million to two million. How large will the cell population be after one day?
 - a. 16 million
- b. 12 million
- c. 8 million

- d. 6 million
 - e. 4 million

19. The half life of Strontium–90 is 30 years. How long will it take for a given quantity to diminish to one tenth of its present amount?

a.
$$30 \frac{\ln 10}{\ln 2}$$

c.
$$10 \frac{\ln 30}{\ln 2}$$

d.
$$\frac{\ln 10}{\ln 2}$$

e.
$$\frac{\ln 10}{\ln 2}$$
 ln 30

20.	If interest is compounded continuously at a rate of 10% how many years will it take
for an	investment of \$1000 to double?

a. $10 \ln 2$ b. $2 \ln 10$ c. $\ln 2 \ln 10$ d. $2^5 \, \text{e.} \, 10$