$==1.5 \mathrm{~cm}=10 \mathrm{pt}$
$=$ none
I have not violated the Honor Code in any way with regard to this work.

Math 105-Test I Feb. 1, $1994=2$
The domain of $f(x)=\frac{x}{\left(x^{2}-1\right) \sqrt{x-3}}$ is
$x>3 x \geq 0, x \neq 1 x \neq 3, x \neq-1, x \neq 1 x<3, x \neq-1, x \neq 1 x \geq 0$
The equation for the line through the point $(2,3)$ and parallel to $x-y=1$ is
$x-y=-1 x+y=5 y=x+4 y=3 x+2 y=3 x-2$
If $f(x)=x^{2}+1$ and $g(x)=\sqrt{x-3}$, then
$g(f(x))=\sqrt{x^{2}-2} g(f(x))=x-2 g(f(x))=\left(x^{2}+1\right) \sqrt{x-3} g(f(x))=x^{2}+1+\sqrt{x-3} g(f(x))=$ $x^{2}+x-2$

The expression $x^{2}-7 x-18$ can be factorized as
$(x-9)(x+2)(x+9)(x-2)(x-3)(x+6)(x+3)(x-6)(x+3)(x+6)$
If $f(x)=x^{3}+\frac{8}{x^{2}}$, then $f^{\prime}(2)=$
$1012-2 \frac{1}{3}$ does not exist
If $f(x)=\frac{1}{\sqrt{x^{3}}}$, then $f^{\prime}(x)=$
$-\frac{3}{2 \sqrt{x^{5}}}-\frac{3}{2 x^{2}} \frac{3}{2 x^{2}} \frac{3}{4 \sqrt{x^{5}}}-\frac{3}{4 \sqrt{x}}$
The curves $y=x^{2}+4$ and $y=-3 x+4$ meet at the point(s)
and $(-3,13)(-1,5)$ and $(1,5)\left(-\frac{4}{3}, 0\right)$ and $(-2,0)(3,1)$ there are no points of intersection
Find the equation of the tangent line to the graph $y=2 \sqrt{x}+5$ at a point whose y coordinate is $y=7$.
$y=x+6 y=\frac{5}{2} x+\frac{9}{2} y=\frac{5}{2} x+7 y=-\frac{5}{2} x+7 y=-\frac{5}{2} x+\frac{19}{2}$
The expression $\left[\left(2 x^{2}+2 x+7\right)^{-2}\right]^{1 / 8} \sqrt{2 x^{2}+2 x+7}$ is the same as
$\left[2 x^{2}+2 x+7\right]^{1 / 4} \frac{1}{\left[2 x^{2}+2 x+7\right]^{1 / 4}} \frac{1}{\sqrt{2 x^{2}+2 x+7}} \sqrt{2 x^{2}+2 x+7}(2 x+\sqrt{7})^{1 / 2}$
$\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}-4}$ is equal to
$\frac{5}{4}-\frac{3}{2}$ does not exist 10
$\lim _{x \rightarrow \infty} \frac{5 x^{5}+4 x^{4}+3 x^{3}+2 x^{2}+x+8}{6 x^{5}-5 x^{4}-4 x^{3}-3 x^{2}-2 x+9}$ is equal to
$\frac{5}{6} \frac{8}{9}-\frac{4}{5}-\frac{3}{4}$ does not exist
$\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$ is equal to
$\frac{1}{4} \frac{1}{2}-\frac{1}{4}-\frac{1}{2}$ does not exist
If $f(x)=x^{99}-x^{98}$, then $\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$ is equal to
$199-98 \frac{(1+h)^{99}-(1+h)^{98}}{h}$ does not exist
If $f(x)=\sqrt{x^{88}+9}$, then $f^{\prime}(x)=$
$\frac{44 x^{87}}{\sqrt{x^{88}+9}} \frac{88 x^{87}}{\sqrt{x^{88}+9}} 88 x^{87} \sqrt{x^{88}+9}\left(88 x^{87}+9\right) \sqrt{x^{88}+9}$ does not exist
If $f(x)=\left(3 x^{4}-1\right)^{2}$, then $f^{\prime}(x)=$
$2\left(3 x^{4}-1\right) 12 x^{3} 24 x^{3}\left(3 x^{4}-1\right) 12 x^{3}\left(3 x^{4}-1\right) 72 x^{7}$
$\lim _{x \rightarrow 1} \frac{3 x^{2}+7 x+2}{2 x^{2}+3 x-3}=$
$6 \frac{3}{2}-\frac{2}{3} \frac{7}{3}$ does not exist
Which equation of the following is perpendicular to the equation $x+2 y=0$, and passes through the point $(1,7)$?
$y=2 x+5 x-2 y=-13 y=-\frac{1}{2} x+\frac{15}{2} y=\frac{1}{2} x+\frac{13}{2} y=-2 x+9$
An equation for the tangent line to the curve $y=x^{3}-5 x+3$ at the point $(2,1)$ is
$y=7 x-13 y=2 x-3 y=3 x-7 y=\frac{x}{3}+3 y=5 x-3$

The y-intercept of the line $4 x+5 y+6=0$ is $\left(-\frac{3}{2}, 0\right)$
$\left(\frac{3}{2}, 0\right)$
$\left(0, \frac{6}{5}\right)$
$\left(0,-\frac{6}{5}\right)$
$(1,2)$
How many real solutions does the equation $x^{2}-4 x+5=0$ have?
01234

