$$
==1.65 \mathrm{~cm}=5.5 \mathrm{pt}
$$

I have not violated the Honor Code in any way with regard to this work.

Math 105-Test III April 12, $1994=2$
$=1$
The slope of the curve $x^{3}+y^{3}=9 x y$ at $(2,4)$ is
$\frac{4}{5} 3-4-\frac{2}{5} \frac{5}{3}$
Let $f(x)=\sqrt{x+1} \ln (x+1)$. Then $f^{\prime}(x)=$
$\frac{2+\ln (x+1)}{2 \sqrt{x+1}} \frac{1}{\sqrt{x+1}} \frac{\ln (x+1)}{2 \sqrt{x+1}}+\frac{\sqrt{(x+1)}}{\ln (x+1)} \frac{\ln (x+1)}{\sqrt{x+1}}-\frac{1}{\sqrt{x+1}} \frac{1}{2 \sqrt{x+1}} \frac{1}{x+1}$
The solution of the differential equation $y^{\prime}+y=0, y(0)=1$ is
$y=e^{-x} y=e^{-x}+e^{x} y=e^{x} y=2 e^{-x} y=1$
Find x such that $\ln 10^{x}=10 x$
$x=0 x=1 x=\ln 10 x=e x=10$
The solution of the equation $e^{x^{2}-x}=e^{2}$ is
$x=2$ or $x=-1 x=-2 x=0 x=1$ or $x=-2$ no solution
The derivative of $y=\left(x e^{x}+1\right)^{-1}$ is
$-\left(x e^{x}+1\right)^{-2}\left(e^{x}+x e^{x}\right)-\left(x e^{x}+1\right)^{-2}+\left(e^{x}+x e^{x}\right)\left(x e^{x}+1\right)^{-1}\left(e^{x}+x e^{x}\right)-\left(e^{x}+x e^{x}\right)-2$ $-\left(x e^{x}+1\right)^{-2}$

The function $y=(4 x-1) e^{3 x-2}$ has one relative extremum point. This point is a
minimum at $x=-\frac{1}{12}$ minimum at $x=\frac{1}{4}$ maximum at $x=-\frac{1}{12}$ maximum at $x=\frac{1}{4}$ minimum at $x=\frac{2}{3}$

Solve the equation $\ln (\ln (x+1))=1$
$x=e^{e}-1 x=e-1 x=e^{e-1} x=0$ no solution
The equation of the tangent line to the graph of $y=\ln \left(x^{2}+1\right)$ at $x=0$ is
$y=0 y=x+1 x=-1 y=-1 y=2 x$
Use logarithmic differentiation to find the derivative of $f(x)=(x+1)^{(x+1)}$.
$[\ln (x+1)+1](x+1)^{(x+1)}(x+1)(x+1)^{x}(x+1) \ln (x+1) \frac{1}{x+1} \ln (x+1)(x+$ 1) $[\ln (x+1)+1]$

From 1990 to 1993 the population of a town grew exponentially from 8000 to 16000 . How large will the population be in the year 1996?
$8000 e^{2 \ln 2} 16000 \frac{e^{2 \ln 2}}{8000} 32000 e^{\ln 2} 8000 e^{\ln 2}$
The half life of an radioactive element is 3 days. Its decay constant is (assume $\ln 2=$ 0.69)

$$
\begin{aligned}
& \lambda=0.23 \lambda=0.069 \lambda=0.0 .023 \lambda=0.69 \lambda=0.023 \\
& \frac{d}{d x}\left[x^{2} \ln \sqrt{x}=\right. \\
& x \ln x+\frac{x}{2} 2 x \ln \sqrt{x} 2 x \frac{1}{\sqrt{x}} 2 x \frac{1}{\ln \sqrt{x}} 2 x \ln \frac{1}{2 \sqrt{x}} \\
& \frac{d}{d x}\left[(x+1)^{2} e^{x^{3}-2}\right]= \\
& 2(x+1) e^{x^{3}-2}+3 x^{2}(x+1)^{2} e^{x^{3}-2} 2(x+1) e^{x^{3}-2}+(x+1)^{2} e^{x^{3}-2} 2(x+1)+e^{3 x^{2}} 2(x+1) e^{3 x^{2}} \\
& 2(x+1)+3 x^{2} e^{x^{3}-2}
\end{aligned}
$$

If $\$ 50$ is deposited in an account with 10% compounded continuously, how much money will be in the account after 10 years? (assume $e=2.7$)

13512575155100
If $f(x)=\ln \left[\left(x^{2}+1\right)^{-3}\left(x^{3}-1\right)^{4}\right]$, then $f^{\prime}(x)$ is
$-\frac{6 x}{x^{2}+1}+\frac{12 x^{2}}{x^{3}-1}-3 \ln \left(x^{2}+1\right)^{-4}+4 \ln \left(x^{3}-1\right)-6 x \ln \left(x^{2}+1\right)^{-3}+12 x^{2} \ln \left(x^{3}-1\right)^{4}$
$\frac{1}{\left(x^{2}+1\right)^{3}\left(x^{3}-1\right)^{4}} \frac{6 x}{x^{2}+1}-12 x^{2}\left(x^{3}-1\right) \frac{d}{d x}\left[x^{e+\ln 2}\right]=$
$(e+\ln 2) x^{e+\ln 2-1}(e+\ln 2) x^{e+\ln 2} x^{e+\ln 2} \frac{1}{e+\ln 2} x^{e+\ln 2} e x^{e-1}+\ln 2 x^{\ln 2-1}$
$e^{2 \ln x^{3}-\ln 4+\ln x}=$
$\frac{x^{7}}{4} \frac{x^{4}}{2} 2 x^{3}-4+x \frac{2}{x^{3}}-\frac{1}{4}+\frac{1}{x}-\frac{1}{2 x^{4}}$
The derivative of $f(x)=\ln \left(1+e^{x}\right)^{2}$ is
$\frac{2 e^{x}}{1+e^{x}} 2 \frac{e^{x}}{\left(1+e^{x}\right)^{2}} 2 e^{x} \ln \left(1+e^{x}\right) 2\left(1+e^{x}\right) \ln \left(1+e^{x}\right)$
If $x^{\frac{2}{3}}+y^{\frac{2}{3}}=8$, then $y^{\prime}=$
$-\left(\frac{y}{x}\right)^{\frac{1}{3}}-y^{-\frac{1}{3}}-x^{-\frac{1}{3}}\left(\frac{x}{y}\right)^{\frac{1}{3}} y^{\frac{1}{3}}+x^{\frac{1}{3}} y^{\frac{1}{3}}-x^{\frac{1}{3}}$

