

I

III IV

- (a) I (b) II (c) III (d) IV (e) none of the above
- 2. For which value of x does $f(x) = -x^2 + 6x 11$ have a relative maximum?
- (a) x = -2 (b) x = 11 (c) x = 3 (d) x = 0 (e) f(x) has no relative maximum

3. Find the value(s) of x where $f(x) = x^3 + 3x^2 - 9x + 27$ has a relative extreme point.

				_
(a)	\mathbf{v}	_	1	n
(a)	Λ	_	-т,	v

(b)
$$x = 27$$

(c)
$$x = 0$$

(c)
$$x = 0$$
 (d) $x = -3, 1$

(e) f(x) has no relative extreme point

4. Which of the sketches below best represents the graph of $y = x^3 + 6x + 1$?

(d)

5. Find the minimum value of $f(x) = x + \frac{1}{x}$, for x > 0.

- (a) 10
- (b) 3
- (c) 4
- (d) 2 (e) there is no minimum value

- 6. Find the maximum value of $f(x) = 10 x^4 + 2x^2$.
- (a) 12
- (b) 4
- (c) 9 (d) 11 (e) 10
- 7. A rocket is fired in such a way that its height above the ground after t seconds is $h(t) = 320t - 16t^2$ feet. How many seconds does it take for the rocket to reach its maximum height?
- (a) 12
- (b) 11 (c) 9 (d) 10 (e) 8

- 8. If $f(x) = (x^2+3)\sqrt{x+4}$, what is f'(0)?
- (a) $\frac{1}{4}$ (b) $\frac{3}{4}$ (c) 2 (d) 4 (e) 0

9. If $f(x) = x^3 + x + 1$, what is the minimum value of f(x) for $x \ge 0$?

- (a) 1
- (b) 2
- (c) 3
- (d) 0
- (e) 4

10. For $f(x) = x^4 - 24x^2 + 7x + 3$, determine the interval(s) where the graph is concave down.

- (a) $(-\infty, -3)$ and $(3, \infty)$ (b) (-2, 2) (c) (0, 7) (d) $(-\infty, -24)$ and $(24, \infty)$ (e) (-3, 3)

On Problems 11-12, indicate whether the statement is true or false.

11. If
$$f(x) = \begin{cases} x+3 & \text{for } x \le 1 \\ 2x+2 & \text{for } x > 1 \end{cases}$$

then f(x) is continuous at x = 1.

- (a) true
- (b) false

12. If
$$f(x) = \begin{cases} x+1 & \text{for } x \le 0 \\ x^2 & \text{for } x > 0 \end{cases}$$

then f(x) is differentiable at x = 0.

- (a) true
- (b) false

13. For which value(s) of x does $f(x) = x^8$ have an inflection point?

- (a) x = 1
- (b) x = 0
- (c) x = -1, 0, 1

- (d) x = -1, 1
- (e) f(x) has no inflection point

14. For the curve $y = \frac{1}{x^2} + 2x - 1$, which lines are asymptotes?

(a)
$$y = -1$$
 and $x = 2$

(b)
$$y = 0$$
 and $y = 2x$

(c)
$$x = 0$$
 and $y = 2x - 1$

(d)
$$y = 2$$
 and $y = -x + 2$

(c) x = 0 and y = 2x - 1 (d) y = 2 and y = -x + 2 (e) there are no asymptotes

15. A rectangular garden is to have a fence on three sides, with the fourth side against a building. If there are 100 feet of fencing available, find the maximum area for the garden (in square feet).

(e) 5000

16. If $f(x) = \frac{x+1}{x-2}$, what is f'(x)?

(a)
$$\frac{2x}{(x-1)^2}$$
 (b) 1 (c) $\frac{(x+1)^2}{(x-2)^2}$ (d) $\frac{1}{2}$ (e) $\frac{-3}{(x-2)^2}$

(c)
$$\frac{(x+1)^2}{(x-2)^2}$$

(d)
$$\frac{1}{2}$$

(e)
$$\frac{-3}{(x-2)^2}$$

17. If f(2) = 0, g(2) = 1, f'(2) = 3, and g'(2) = 4, what is $\frac{d}{dx}(f(x) \cdot g(x))$ at x = 2?

- (a) 12
- (b) 6
- (c) 8
- (d) 4
- (e) 3

The following graphs are to be used in Problems 18, 19, and 20.

т	II	TTT
l	11	Ш

- 18. Which graph has the property that the <u>slope</u> always decreases as x increases?
- (a) I (b) II (c) III (d) IV (e) V
- 19. Which are the graphs of increasing functions?
- (a) I, IV, V (b) II, III (c) I (d) I, IV (e) none of the graphs
- 20. Which are the graphs of functions f such that f'(x) < 0 thoughout the interval shown?

(a) III

(b) I, IV, V

(c) II, III

(d) II

(e) none of the graphs