Answers to test 3

Part I. Multiple Choice

1. $\frac{d}{d x}\left(x^{3} e^{4 x}\right)=3 x^{2} e^{4 x}+4 x^{3} e^{4 x}$ by the product rule.
2. Suppose $f(x)$ is a function which satisfies $f^{\prime}(3)=0, f^{\prime}(5)=0, f^{\prime \prime}(3)=-4$, and $f^{\prime \prime}(5)=5$. Which of the following statements is true? Ans. $f(x)$ has a relative maximum at $x=3$ and a relative minimum at $x=5$. (The second derivative test)
3. Let $y=\sqrt{\ln x}$. Then $y^{\prime}=\frac{1}{2 x \sqrt{\ln x}}$ by the chain rule.
4. Let $h(x)=\frac{f(x)}{g(x)}$. Then $h^{\prime}(0)=\frac{g(0) f^{\prime}(0)-f(0) g^{\prime}(0)}{[g(0)]^{2}}=-\frac{5}{8}$. (Use the given table.)
5. Let $k(x)=f(g(x))$. Then $k^{\prime}(0)=f^{\prime}(g(0)) \cdot g^{\prime}(0)=f^{\prime}(2) \cdot g^{\prime}(0)=1$. (Use the given table.)
6. Let $f(x)$ be a function with $f^{\prime}(2)=0$. Which of the following must be true about f ? Ans. The tangent line to the graph of f at $(2, f(2))$ is horizontal.
7. Suppose that $f(x)$ is increasing and concave up everywhere. Further, $f(2)=2$ and the tangent line at the point $(2,2)$ is the line $y=x$. Which of the following can you conclude? Ans. $f(5)>5$. If the graph is concave up its slope is increasing, so it is above the tangent line $y=x$ for all $x>2$.
8. The graph of a function $f(x)$ is sketched below. Which of the following statements is true? Ans. $f(x)$ is increasing and $f^{\prime}(x)$ is decreasing.
9. Suppose that $f(x)$ is a function with $f^{\prime \prime}(x)>$ Ans. 0 on the interval $(2, \infty)$ and $f^{\prime \prime}(x)<0$ on the interval $(-\infty, 2)$. Which of the following could be the graph of $f(x)$? (Use the letter to the upper left of each graph.) Note that the answer is the only graph that is concave up for $x>2$ and down for $x<2$.
10. Suppose that $f(x)$ is a function whose derivative is $f^{\prime}(x)=x \ln x$. Identify the x value(s) of all inflection point(s) of $f(x)$. Ans. $1 / e$, because $f^{\prime \prime}(x)=\ln x+1$. The only solution to $f^{\prime \prime}(x)=0$ is $x=1 / e$, and one checks that $f^{\prime \prime}(x)$ changes sign there.

Part I. Partial Credit

11. A pot of boiling water $\left(100^{\circ}\right.$ Celsius) is left to cool in a room whose temperature is 20° Celsius so that after t minutes, the temperature of the water is $H=20+A e^{k t}$ for some constants A and k. After 30 minutes, the water is 60°. At what rate (with respect to time) is the temperature of the water changing after 90 minutes?
Ans. $-(\ln 2) / 3 \approx-0.231$. First, substitute $t=0$, and $H=100$ to get $A=80$. Then, substitute $t=30$ and $H=60$ and solve for k to get $k=-(\ln 2) / 30$. The rate at which the temperature changes is $H^{\prime}(t)=k A e^{k t}$. Using the values of A and k just determined and setting $t=90$ gives the answer.
12. The half-life of carbon-14 is 5730 years, so carbon decays according to the equation $y=A e^{-k t}$, where $k=.000121$. An ancient document written on papyrus is found to have 37.5% of the carbon-14 that a freshly cut sample has. How old is the document?
Ans. $-(\ln (0.375)) / 0.000121 \approx 8106$ years. Because $0.375=\frac{y(t)}{y(0)}=\frac{A e^{-k t}}{A}=e^{-0.000121 t}$. Solving for t gives the answer.
13. Find the the equation of the line tangent to $y=\frac{e^{x^{2}+2 x}}{x^{3}+1}$ at $(0,1)$. Ans. $y=2 x+1$. First find y^{\prime} by using the quotient and chain rules. Plugging in $x=0$ gives $y^{\prime}(0)=2$, which is the slope of the tangent line.
14. The period P in seconds of a simple pendulum is completely determined by its length L according to the formula $P=\frac{2 \pi}{\sqrt{10}} \sqrt{L}$, where $\pi \approx 3.14$. Therefore, if the length of a pendulum increases, its period will increase. (That is why clocks with metal pendulums tend to run slow in the summertime.) Find the rate (with respect to time) at which a simple pendulum's period is increasing when the pendulum is 4 m long and its length is increasing at a rate of $.001 \mathrm{~m} /$ day. Ans. $\frac{0.001 \pi}{2 \sqrt{10}} \approx 0.0004967$. Use the chain rule to get

$$
\frac{d P}{d t}=\frac{2 \pi}{\sqrt{10}} \cdot \frac{1}{2 \sqrt{L}} \cdot \frac{d L}{d t}=\frac{\pi}{\sqrt{10}} \cdot \frac{1}{\sqrt{L}} \cdot \frac{d L}{d t}
$$

Then plug in $L=4$ and $d L / d t=0.001$ to get the answer.
15. The demand q for Widgets is a function of the price p, i.e. $q=f(p)$. When the price $p=\$ 10$, we have $q=f(10)=100$ and $f^{\prime}(10)=-4$.
(a) The revenue R is determined by $R=p q$. Find $d R / d p$ when $p=10$. Ans. 60. Write $R=p f(p)$, so by the product rule $R^{\prime}(p)=p f^{\prime}(p)+f(p)$. Then plug in $p=10$.
(b) The cost of producing q Widgets is $C(q)=100 q+5000$. Find $d C / d p$ when $p=10$.

Ans. -400 . By the chain rule, $d C / d p=(d C / d q) \cdot(d q / d p)=100 f^{\prime}(p)$. Then plug in $p=10$.
(c) If P represents profit, find $d P / d p$ when $p=10$. Ans. 460. Use $P=R-C$, so that $d P / d p=d R / d p-d C / d p$.
16. Consider the function $f(x)=x-3 x^{\frac{2}{3}}$.
(a) Identify the intervals on which $f(x)$ is increasing and those on which $f(x)$ is decreasing.
(b) Identify the x-value(s) of all relative extreme point(s) of $f(x)$ and specify whether each is a maximum or a minimum.
Ans. (a) $f(x)$ is increasing on $(-\infty, 0)$ and on $(8, \infty)$, decreasing on $(0,8)$. (b) There is a relative max at $x=0$ and a relative min at $x=8$. First compute the derivative, $f^{\prime}(x)=1-2 x^{-\frac{1}{3}}$. There are two critical points: at $x=0$, where $f^{\prime}(x)$ does not exist, and at $x=8$, where $f^{\prime}(x)=0$. Checking the sign of $f^{\prime}(x)$ on the intervals $(-\infty, 0),(0,8)$, and $(8, \infty)$ gives the answer.
17. Consider the function $f(x)=x^{4}-54 x^{2}+27 x-17$.
(a) Identify the intervals on which $f(x)$ is concave up and those on which $f(x)$ is concave down.
(b) Identify the x-value(s) of all inflection point(s) of $f(x)$.

Ans. (a) Concave up on $(-\infty,-3)$ and on $(3, \infty)$, concave down on $(-3,3)$. (b) Inflection points at $x=3$ and $x=-3$. Compute the second derivative, $f^{\prime \prime}(x)=12 x^{2}-108$, and solve $f^{\prime \prime}(x)=0$ to get $x= \pm 3$. Checking the sign of $f^{\prime \prime}(x)$ on the intervals $(-\infty,-3),(-3,3)$, and $(3, \infty)$ gives the answer.
18. Suppose that $f(x)$ is a function which satisfies the following list of properties:

- $f(-3)=-1, f(0)=-3, f(2)=-5$, and $f(4)=0$.
- The only solutions to $f^{\prime}(x)=0$ are $x=-3$ and $x=2$.
- $f^{\prime}(x)>0$ on the intervals $(-\infty,-3),(2, \infty)$.
- $f^{\prime}(x)<0$ on the interval $(-3,2)$.
- The only solution to $f^{\prime \prime}(x)=0$ is $x=0$.
- $f^{\prime \prime}(x)>0$ on $(0, \infty)$.
- $f^{\prime \prime}(x)<0$ on $(-\infty, 0)$.
(a) List all the relative extreme points and inflection points of $f(x)$.
(b) Sketch a possible graph of $f(x)$, labeling the points you listed in part (a).

Ans. Relative maximum at $x=-3$, relative minimum at $x=2$, inflection point at $x=0$. The graph is drawn below.

