Answers to test 2

Part I. Multiple Choice

1. Which of the following expressions is equivalent to $e^{\ln t+\ln (1 / t)}$? Ans. 1.

Because $\ln t+\ln (1 / t)=\ln \left(t \cdot \frac{1}{t}\right)=\ln 1=0$.
2. Given a function $y=f(x)$, we can calculate the derivative by using the formula

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { (Ans.) }
$$

3. If you deposit $\$ 500$ in an account paying 4% interest compounded continuously, how much will be in the account after 20 years? Ans. $500 e^{0.8}$. From the formula for continuously compounded interest, $y=A e^{r t}$, with $A=500, r=0.04$ and $t=20$
4. Which of the following limits would you obtain when using the definition of the derivative to compute $f^{\prime}(x)$ where $f(x)=x^{2}-x$? Ans. $\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-h}{h}$. Apply the basic definition (as given in question 2 above) and simplify.
5. What is the derivative $f^{\prime}(x)$ of the function $f(x)=3 x^{4}-\frac{4}{\sqrt{x}}$? Ans. $12 x^{3}+2 x^{-3 / 2}$. Rewrite $f(x)=3 x^{4}-4 x^{-1 / 2}$ and use the power rule with the addition and coefficient rules.
6. A company finds that if it produces and sells x boxes of assorted chocolates per week, its profit (in dollars) is $-1000+15 x+0.02 x^{2}$. What is its marginal profit (in dollars) at a production level of 100 boxes per week? Ans. \$19.00. The marginal profit function is $P^{\prime}(x)=15+0.04 x$, so $P^{\prime}(100)=19$.
7. If $y=e^{2 t}-2 e^{t}$, which of the following functions is equal to $\frac{d y}{d t}$? Ans. $2 e^{2 t}-2 e^{t}$. Use the formula $\frac{d}{d t} e^{c t}=c e^{c t}$ with the addition and coefficient formulas.
8. If $g(x)=3 x^{4}-2 x^{3}+5 x-\ln x$, which of the following functions is equal to $g^{\prime \prime}(x)$?

Ans. $36 x^{2}-12 x+\frac{1}{x^{2}}$, because $g^{\prime}(x)=12 x^{3}-6 x^{2}+5-\frac{1}{x}$.
9. What is the point on the curve $y=\ln x$ where the tangent line is parallel to the line $3 y=2 x+1$? Ans. $\left(\frac{3}{2}, \ln \frac{3}{2}\right)$. Solve the equation $\frac{1}{x}=\frac{2}{3}$.
10. With an inflation rate of 2% per annum, prices are described by the formula $P=$ $P_{0}(1.02)^{t}$ where P is the price in dollars after t years and P_{0} is the price when $t=0$. How fast are prices rising in dollars per year when $t=3$? Ans. $P_{0}(1.02)^{3} \ln (1.02)$. Use the formula $\frac{d}{d t} b^{t}=b^{t} \ln b$ with $b=1.02$, then plug in $t=3$.

Part II. Partial Credit

11. Find all values of x which satisfy the equation $4+\ln \left(x^{3}\right)=10$. Ans. $x=e^{2}$ is the only solution. Rewrite as $\ln \left(x^{3}\right)=6$, so that $x^{3}=e^{6}$, and $x=\left(e^{6}\right)^{1 / 3}=e^{2}$.
12. You are considering investing some money with Investments 'R' Us. When you do some research, you find that they plan to invest your money in bonds paying 7% interest compounded continuously. How long will it take Investments 'R' Us to triple your investment? Ans. $(\ln 3) / 0.07 \approx 15.7$ years. With A being the initial investment and t the time in years, you have to solve the equation $3 A=A e^{0.07 t}$.
13. Tritium, a synthetic form of hydrogen, satisfies the exponential decay law, $y=A e^{-k t}$, where t is the time (in years) and y is the amount (in grams) at time t. If an absent-minded scientist receives a shipment of 200 grams of tritium and finds that only 50 grams of it are left when he remembers the sample 25 years later, find a function that gives the amount of tritium remaining in the sample t years after the scientist received the shipment.
Ans. $200 e^{-t(\ln 4) / 25}$ or $200 e^{t(\ln (1 / 4)) / 25}$ or (approximate) $200 e^{-0.05545 t}$.
First solve the equation $50=200 e^{-25 k}$ for k, then substitute that value of k into the decay equation, also setting $A=200$.
14. Find the equation of the tangent line to the curve $y=2 x^{3}-2 x$ at the point $(1,0)$.

Ans. $y=4 x-4$. First compute the derivative, $y^{\prime}=6 x^{2}-2$, then plug in $x=1$ to find the slope at $(1,0)$. Then write the equation of the line through $(1,0)$ with that slope.
15. A toy rocket launched straight up from the top of a building has a height s in feet above ground given by the formula $s=96+80 t-16 t^{2}$, where t denotes the time in seconds after launch. (a) When is the velocity of the rocket zero? Ans. At $t=5 / 2 \mathrm{sec}$. You have to solve the equation $d y / d t=0$. (b) What is the velocity of the rocket when it strikes the ground? Ans. - 112 ft . per sec. First solve the equation $96+80 t-16 t^{2}=0$ to find when the rocket strikes the ground. The only positive solution is $t=6$. Then plug that into the derivative $y^{\prime}=80-32 t$.
16. Let $P(x)$ be the profit made by a company selling x midsize cars per year. Suppose that $P(100)=60,000$ and $P^{\prime}(100)=1,000$. Estimate the profit from the sale of 102 cars per year. Ans. $\$ 62,000$. Use the linear approximation formula $P(102) \approx P(100)+P^{\prime}(100) \cdot 2$.
17. Calculate the derivative of the function $y=\ln \sqrt[3]{x}$. Ans. $y^{\prime}=\frac{1}{3 x}$. Rewrite $y=\frac{1}{3} \ln x$, so that $y^{\prime}=\frac{1}{3} \frac{d}{d x} \ln x=\frac{1}{3 x}$
18. The distance s in feet travelled by a car during the first ten seconds after it starts from rest is given by the formula $s=\frac{5}{2} t^{3}-\frac{4}{7} t^{7 / 2}$, where t is the time in seconds. (a) What is the average velocity of the car in the first second. Ans. $27 / 14 \mathrm{ft}$. per sec. Since $s(1)=27 / 14$ and $s(0)=0$, the distance travelled is $27 / 14 \mathrm{ft}$. The time elaped is 1 sec . (b) What is the acceleration of the car after 4 seconds? Ans. 20 ft . per sec^{2}. Compute $s^{\prime \prime}$ and plug in $t=4$.

