1. If $f(x)=\frac{x}{x-3}$, for which value(s) of x does $f(x)$ have a rel. max or min?
(a) none
(b) $x=-1$ and $x=-3$
(c) $x=0$
(d) $x=1$
(e) $x=3$
2. Suppose $y=e^{x}$ and $x=t^{2}$. Find $\frac{d y}{d t}$ when $t=10$.
(a) $20 e^{100}$
(b) e^{100}
(c) 20
(d) 200
(e) $100 e^{20}$
3. Let $f(x)=(\ln x) / x$. On which of the following intervals is $f(x)$ increasing?
(a) $(0, e)$
(b) $(1,2 e)$
(c) $(\ln 2,4)$
(d) (e, ∞)
(e) no interval
4. A ball is thrown up into the air so that its height $h(t)$ after t seconds is given by the formula $h(t)=$ $-16 t^{2}+128 t+5$. Find the maximum height that the ball reaches.
(a) 261
(b) 256
(c) 266
(d) 278
(e) 237
5. Where does the function $f(x)=e^{-x^{2}}$ have an absolute maximum?
(a) $x=0$
(b) $x=-1 / \sqrt{2}$
(c) $x=1 / \sqrt{2}$
(d) $x=-1$
(e) no abs. max.
6. Where does the function $f(x)=e^{-x^{2}}$ have an absolute minimum?
(a) no abs. min.
(b) $x=-1 / \sqrt{2}$
(c) $x=1 / \sqrt{2}$
(d) $x=1$
(e) $x=0$
7. Find the derivative of $f(x)=x^{2}+\left(1 / x^{2}\right)$.
(a) $2 x-\frac{2}{x^{3}}$
(b) $2 x+\frac{2}{x^{3}}$
(c) $2 x-\frac{2}{x}$
(d) $2 x+\frac{2}{x}$
(e) $x-\frac{1}{x}$
8. Let $f(x)=x^{2}+2 x+3$. Where does $f(x)$ have an inflection point?
(a) nowhere
(b) $x=0$
(c) $x=1$
(d) $x=2$
(e) $x=3$
9. Let $y=2^{x}$ and compute $d y / d x$.
(a) $(\ln 2) 2^{x}$
(b) 2^{x}
(c) $x 2^{x-1}$
(d) 0
(e) 2
10. The growth rate of a certain bacteria culture is proportional to its size, which means that it satisfies an exponential growth equation $y=A e^{k t}$ where t is the time and y is the size of the population.. Suppose that the culture contains 10,000 bacteria at noon, and 40,000 bacteria at 2:00 PM. How many bacteria will it contain at 3:00 PM?
(a) 80,000
(b) 60,000
(c) $10,000 \cdot 2^{3 / 2}$
(d) $\frac{10,000}{\ln 4}$
(e) 120,000
11. If $f(x)=\frac{1}{x^{2}}$, which of the following limits equals $f^{\prime}(x)$?
(a) $\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}\right)$
(b) $\lim _{h \rightarrow 0} \frac{h}{(x+h)^{2}-x^{2}}$
(c) $\lim _{h \rightarrow 0} h\left(\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}\right)$
(d) $\lim _{h \rightarrow 0} \frac{\frac{1}{x^{2}}-\frac{1}{h^{2}}}{h}$
(e) $\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{x^{2}-h^{2}}\right)$
12. Find the slope of the graph of $y=\sqrt{x}$ at the point $(9,3)$.
(a) $1 / 6$
(b) $1 / 3$
(c) $1 / 2$
(d) 3
(e) 27
13. If $f(x)=\frac{x}{1+x^{2}}$, what is $f^{\prime}(x) ?$
(a) $\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}$
(b) $\frac{1}{2 x}$
(c) $\frac{1}{\left(1+x^{2}\right)^{2}}$
(d) $\frac{1+3 x^{2}}{1+x^{2}}$
(e) $\frac{1}{1+x^{2}}$
14. Which of the following is equal to $e^{(\ln 3) / 2}$?
(a) $\sqrt{3}$
(b) $2^{1 / 3}$
(c) $2^{-1 / 3}$
(d) $\sqrt{e^{3}}$
(e) $3 / 2$
15. Suppose you put $\$ 250$ into a bank account that receives 8% annual interest compounded continuously. How many years will it take before your bank account has $\$ 1,000$?
(a) $\frac{\ln 4}{0.08}$
(b) (0.08) $\ln 4$
(c) $\frac{\ln (0.08)}{4}$
(d) $4 \ln (0.08)$
(e) $250 e^{0.08}$
16. Apply linear approximation to the function $f(x)=1 / x$ to estimate $1 / 2.016$. Write your answer in decimal form.
17. The graph of $y=f(x)$ is shown on the right.

Which of the following statements is true?
(a) $f(x)$ is decreasing and $f^{\prime}(x)$ is increasing.
(b) $f(x)$ is increasing and $f^{\prime}(x)$ is decreasing.
(c) $f(x)$ is increasing and $f^{\prime}(x)$ is increasing.
(d) $f(x)$ is decreasing and $f^{\prime}(x)$ is decreasing.
(e) None of the other statements is true.
18. Find the equation of the line passing through the points $(3,7)$ and $(2,2)$.
(a) $y=5 x-8$
(b) $y=7 x-14$
(c) $y=7 x-12$
(e) $y=\frac{1}{5} x+\frac{8}{5}$
(e) $y=5 x+2$
19. The derivative of $\left(z^{4}+3 z^{2}+1\right)^{2}$ is
(a) $2\left(z^{4}+3 z^{2}+1\right)\left(4 z^{3}+6 z\right)$
(b) $2\left(z^{4}+3 z^{2}+1\right)$
(c) $\left(4 z^{3}+6 z\right)$
(d) $\left(4 z^{3}+6 z\right)^{2}$
(e) $2(4 z+6 z)$
20. Suppose $f(x)$ is a function satisfying the following:

$$
f^{\prime}(1)=-2 ; \quad f^{\prime}(2)=-1 ; \quad f^{\prime}(3)=1 ; \quad f^{\prime}(4)=3
$$

If $h(t)=f\left(t^{3}+1\right)$, what is $h^{\prime}(1) ?$
(a) -3
(b) 3
(c) 1
(d) -6
(e) -1
21. Find the equation of the line tangent to the curve $y=1+\ln x$ at the point $(e, 2)$.
(a) $y=\frac{x}{e}+1$
(b) $y=e x+2$
(c) $e y=x-2$
(d) $y-2=x-e$
(e) $y=e x-2$
22. A manufacturer's monthly revenue from the sale of x items is $R(x)=20 \sqrt{100 x-x^{2}}$. Find the marginal revenue.
23. Consider the function $f(x)=(8-2 x) e^{(x+7)}$. Which one of the following statements is true?
(a) $x=3$ gives an absolute maximum.
(b) $x=3$ gives a relative minimum.
(c) $x=4$ gives a relative maximum.
(d) The function is everywhere concave down.
(e) There are no relative maxima or minima.
24. What is $\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{n}$?
(a) e^{2}
(b) $\ln 2$
(c) 1
(d) 0
(e) $1 / 2$
25. For each of the following functions, determine where it is increasing, decreasing, concave up, concave down, has rel. max or min, has an inflection point. Then draw a rough sketch of the graph.
(i) $f(x)=x^{2} e^{-x}$
(ii) $f(x)=2 x^{3}-3 x^{2}-12 x+5$
(iii) $f(x)=x-\ln x$
26. Find $f^{\prime}(x)$ in each of the following cases. Simplify your answer as much as possible.
(i) $f(x)=x e^{x^{2}}$
(ii) $f(x)=\frac{\ln x}{x^{2}}, \quad x>0$.
27. Where, if anywhere, is the following function not continuous?

$$
f(x)= \begin{cases}x-2 & \text { if } x \leq 0 \\ 2 x-2 & \text { if } 0<x \leq 1 \\ 1-x & \text { if } 1<x<2 \\ x & \text { if } x \geq 2\end{cases}
$$

(a) only at $x=2$
(b) only at $x=1$
(c) only at $x=0$

$$
\text { (d) at } x=1 \text { and } x=2
$$

(e) at $x=0$ and $x=1$
29. Suppose $f(x)$ is a function defined for $x>0$ whose first and second derivatives are as follows:

$$
f^{\prime}(x)=\frac{(x-1)(x+1)}{x^{2}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{2}{x^{3}}
$$

Which of the following might be the graph of f ? (Use the letter to the lower left of the correct picture.)
minipage[b]2in (a)

