Math 105 Exam II answers.

1. Solve the following for x.
(a) $e^{3 x-2}=1$

Apply \ln to both sides: on the left, you get $\ln \left(e^{3 x-2}\right)=3 x-2$, and on the right you get $\ln (1)=0$. So $3 x-2=0$, so $x=\frac{2}{3}$.
(b) $\ln \left(5 e^{-2 x}\right)=0$

By the properties of logarithms, the left side can be rewritten as $\ln \left(5 e^{-2 x}\right)=\ln (5)+$
$\ln \left(e^{-2 x}\right)=\ln (5)+(-2 x)$. Now set this equal to 0 and solve for $x: x=\frac{\ln (5)}{2} \approx 0.805$.
2. Evaluate the following; your answer should be an integer or fraction.
(a) $\log _{7}\left(\frac{1}{49}\right)$
$\log _{7}\left(\frac{1}{49}\right)=\log _{7}\left((7)^{-2}\right)=-2$.
(b) $e^{\ln \left(2^{3}\right)}$
$e^{\ln \left(2^{3}\right)}=2^{3}=8$.
3. What is the half-life of a substance with a decay constant of 0.635 ?

By the formula from class, the half-life is $\ln (2)$ divided by the decay constant: $\ln (2) / 0.635$ ≈ 1.09.
4. A substance decays exponentially, so that the amount after t days is given by the formula $y=A e^{-k t}$. If exactly $\frac{1}{3}$ of the initial amount remains after four days, what is the decay constant k of the substance?
If you start with an amount A, then after 4 days, you will have $\frac{A}{3}$ remaining. So take the equation $\frac{A}{3}=A e^{-k 4}$ and solve for k : cancel A from each side to get $\frac{1}{3}=e^{-4 k}$. Apply \ln to both sides to get $\ln \left(\frac{1}{3}\right)=-4 k$. Solve for k : $k=-\frac{\ln (1 / 3)}{4}$. Using properties of logarithms, $\ln (1 / 3)=-\ln (3)$, so you can rewrite this as $k=\frac{\ln (3)}{4} \approx 0.275$.
5. You owe a loan shark $\$ 800$; he charges interest at a rate of 35%. What is the formula for the amount of money owed after t years in these cases?
(a) If the interest is compounded weekly (52 times a year)?

$$
800\left(1+\frac{0.35}{52}\right)^{52 t}
$$

(b) If the interest is compounded continuously?

$$
800 e^{0.35 t}
$$

6. You deposit $\$ 2000$ into an account paying 7%, compounded continuously. How long will it take for the account to grow to $\$ 3000$?
Solve this equation for $t: 3000=2000 e^{0.07 t}$. Divide by 2000 and apply $\ln : \ln (3 / 2)=$ $0.07 t$, so $t=\frac{\ln (3 / 2)}{0.07}=\frac{\ln (3)-\ln (2)}{0.07} \approx 5.79$.
7. What is the definition of the derivative of the function $f(x)$? (We are looking for the formula involving a limit and h and ...)
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
8. Compute the derivative $f^{\prime}(x)$ of the function $f(x)=3 x^{2}-\frac{2}{x}+\sqrt[3]{x}$ using any rule we have had so far.
Rewrite $\frac{2}{x}$ as $2 x^{-1}$, and rewrite $\sqrt[3]{x}$ as $x^{\frac{1}{3}}$. Then the answer is $f^{\prime}(x)=6 x+\frac{2}{x^{2}}+\frac{1}{3} x^{-\frac{2}{3}}$
9. Consider the function $f(x)=7 x^{2}$.
(a) What is the slope of the secant line to this curve between the points $(1,7)$ and $\left(1+h, 7(1+h)^{2}\right)$? Simplify as much as possible.

$$
\frac{7(1+h)^{2}-7}{h}=\frac{7\left(1+2 h+h^{2}\right)-7}{h}=\frac{14 h+7 h^{2}}{h}=14+7 \mathrm{~h} .
$$

(b) What is the slope of the tangent line to this curve at the point $(1,7)$? It's the limit of the answer for part (a), as h goes to zero: 14 .
10. For what two values of x does the curve $y=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-20 x+3$ have slope zero?

Take the derivative, set it equal to zero, and solve for $x: x^{2}+x-20=0$. Solve this using the quadratic formula (or by factoring) to get $x=4$ and $x=-5$.
11. Let $y=x^{1 / 2}-3$. What is the equation of the line tangent to this curve at the point $(1,-2)$?
Take the derivative and plug in $x=1$ to find the slope: $y^{\prime}=\frac{1}{2} x^{-1 / 2}$, so the slope is $\frac{1}{2}$. It goes through the point $(1,-2)$, so the equation is $y-(-2)=\frac{1}{2}(x-1)$, or $y=\frac{1}{2} x-\frac{5}{2}$.
12. Let $f(x)=x^{4}-6 x^{2}+7 x+1$. Compute $f^{\prime \prime}(x)$ using any rule we have had so far.
$f^{\prime}(x)=4 x^{3}-12 x+7$, so $f^{\prime \prime}(x)=12 x^{2}-12$.
13. You throw a ball into the air at a rate of $80 \mathrm{ft} . / \mathrm{sec}$., so that its position (height) after t seconds is given by the formula $s(t)=-16 t^{2}+80 t$. What is the velocity of the ball after 2 seconds?
Take the derivative of $s(t)$ and plug in $t=2: s^{\prime}(t)=-32 t+80$, so the velocity after 2 seconds is $s^{\prime}(2)=16$.
14. A particle moves along the x-axis so that its position after t seconds is $s(t)=3 t^{3}+2 t+1$.
(a) What is the average velocity of the particle between times $t=0$ and $t=1$?

Average velocity is (distance traveled) divided by time elapsed: $\frac{s(1)-s(0)}{1-0} . s(1)=6$ and $s(0)=1$, so this is $\frac{6-1}{1-0}=5$.
(b) What is the instantaneous velocity of the particle when $t=1$?

Instantaneous velocity is $s^{\prime}(t)$. In this case, that is $s^{\prime}(t)=9 t^{2}+2$. Plug in $t=1$ to get the answer: $s^{\prime}(1)=11$.
(c) What is the acceleration of the particle when $t=1$?

Acceleration is given by $s^{\prime \prime}(t)=18 t$. Plug in $t=1$ to get the answer: $s^{\prime \prime}(1)=18$.

