1.	The number	of degrees in an a	ingle of $\frac{23\pi}{4}$	radians is		
(a)	700°	(b) 1035°	(c) 900°	(d) 1020°	(e) 1	180°

The radian measure of an angle of
$$-690^{\circ}$$
 is
(a) $-\frac{11\pi}{6}$ (b) $-\frac{\pi}{6}$ (c) $-\frac{25\pi}{6}$ (d) $-\frac{23\pi}{6}$ (e) $-\frac{27\pi}{6}$

3.
$$\cos(600^{\circ}) =$$

(a) $\frac{\sqrt{3}}{2}$ (b) $-\frac{\sqrt{3}}{2}$ (c) $\frac{1}{\sqrt{2}}$ (d) $-\frac{1}{2}$ (e) $-\frac{1}{\sqrt{2}}$

4. If
$$f(x) = \sin(\pi e^{x})$$
 then $f'(0) =$
(a) π (b) 0 (c) $-\pi$ (d) e^{π} (e) πe^{π}

5.
$$\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx =$$

(a)
$$2\frac{\sin\sqrt{x}}{\sqrt{x}} + c$$
 (b) $-2\sin\sqrt{x} + c$ (c) $\frac{2}{3}(\sin x)^{\frac{3}{2}} + c$
(d) $2\sin\sqrt{x} + c$ (e) $\frac{2}{3}(\cos x)^{\frac{3}{2}} + c$

6.
$$\int \frac{(\ln x)^{\frac{3}{2}}}{x} dx =$$

(a) $\frac{5}{2} (\ln x)^{\frac{5}{2}} + c$ b) $3 \ln x + c$ (c) $\frac{3}{2} (\ln x)^{2} + c$
(d) $\frac{2}{5} (\ln x)^{\frac{5}{2}} + c$ (e) $2 (\ln x)^{\frac{1}{2}} + c$

7.
$$\int_{0}^{2} \frac{x}{\sqrt{2x^{2} + 1}} dx =$$

(a) 1 (b) $\frac{2}{3}$ (c) $\sqrt{3}$ (d) 3 (e) $\frac{1}{\sqrt{3}}$

- 8. A solid of revolution is obtained by rotating the part of the graph of $f(x) = \sqrt{\cos x}$ between $x = -\frac{\pi}{2}$ and $x = \frac{\pi}{2}$ around the x-axis. Its volume is:
- (a) π (b) 0 (c) 2π (d) $-\pi$ (e) $\sqrt{\pi}$

9. Find the antiderivative
$$F(x)$$
 of $f(x) = 2xe^{x^2-1}$ for which $F(1) = 3$.

10. The slope of the tangent line to the curve $y = \cos \left[\frac{\pi}{2}(x^2 - 1)\right]$ at the point x = 2, y = 0 is (a) π (b) 0 (c) 2π (d) 3π (e) 4π

11. In the figure at the left the shaded region is bounded by the graph of f(x) = 4x and $g(x) = x^3$. Express the total area of the region in terms

evaluate.

of an integral or integrals. Do not

(a)
$$\int_{-2}^{2} (x^{3} - 4x) dx$$

(b) $\int_{-0}^{1} (4x - x^{3}) dx + \int_{-1}^{0} (x^{3} - 4x) dx$
(c) $\int_{0}^{2} (4x - x^{3}) dx + \int_{-2}^{0} (x^{3} - 4x) dx$
(d) $\int_{-1}^{1} (x^{3} - 4x) dx$
(e) $\int_{-1}^{0} (4x - x^{3}) dx + \int_{0}^{1} (x^{3} - 4x) dx$

12. A car travels with velocity (in miles per hour) given by

$$v(t) = 9t^2 + 30t.$$

What is the average velocity in miles per hour of the car during the first two hours of travel?

(a) 39 (b) 40 (c) 42 (d) 32 (e) 19.5

- 13 On a small planet the acceleration due to gravity near the surface is 10 ft/sec². A person throws a rock upward with velocity 20 ft/sec.
 - a. What is the velocity at any time?

answer _____

b. How high does the rock go?

answer