1. The equation of the line passing through the points (-1,-9) and (1,-5) is:

a.
$$y = 2x - 7$$

b.
$$y = 7x + 2$$

c.
$$y = -3x + 2$$

d.
$$y = x + 1$$

e.
$$y = 7x - 3$$

2. The equation of the tangent line at x = 3, y = -3 to the curve $y = 3(2x-7)^{1/3}$ is

a.
$$y = -12x + 25$$

b.
$$y = 12x + 23$$

c.
$$y = 2x - 9$$

d.
$$y = -x + 6$$

e.
$$y = -24x + 49$$

3. Let $f(x) = x^4 + x^2 + 1$ and $g(x) = \frac{1}{\sqrt{x}}$. Then $g(f(x)) = \frac{1}{\sqrt{x}}$

a.
$$\frac{1}{\sqrt{x^4+x^2+1}}$$

b.
$$x^2 + x + 1$$

c.
$$\sqrt{x^4 + x^2 + 1}$$

d.
$$\frac{1}{x^2} + \frac{1}{x} + 1$$

d.
$$\frac{1}{x^2} + \frac{1}{x} + 1$$
 e. $\frac{1}{\sqrt{x^2 + x + 1}}$

4. The point of inflection of
$$y = \frac{1}{2} x^3 + 3x^2 - 13$$
 occurs at $x = \frac{1}{2} x^3 + 3x^2 - 13$

- a. -2 b. -1 c. 0 d. 1 e. 2

$$y^{1/2} + xy + -10 = 0$$

at the point x = 2, y = 4 on the curve,

- a. $-\frac{16}{9}$ b. $\frac{2}{3}$ c. $-\frac{2}{3}$ d. $\frac{16}{9}$ e. $\frac{3}{4}$

6. Let
$$f(x) = \sqrt[3]{x}$$
.

Use the first derivative of f(x) to find an approximate value of $\sqrt[3]{7.8}$.

- b. $\frac{138}{71}$ c. $\frac{780}{396}$ d. $\frac{159}{80}$ e.

- 7. The slope of the curve $y = x \ln x$ at x = 1 is:
 - a. $\frac{1}{3}$ b. 2 c. 0 d. 1 e. ln 2

- $f(x) = x(3x^2 1)$: Find the largest value of f(x) on the closed 8. interval [0, 1]

- a. 2 b. 3.8 c. 8 d. $\frac{1}{3}$ e. 0

9. A particle moves along the x axis in such a way that its instantaneous velocity $v = 4 \sin \pi t$ for $-\frac{1}{2} \le t \le \frac{1}{2}$.

Find the value of its acceleration when v = 0.

- a. 4π b. -4π c. 9 d. 5 e. 0

10.
$$\sin 1050^{\circ} =$$

(a)
$$\frac{\sqrt{3}}{2}$$
 (b) $-\frac{\sqrt{3}}{2}$ (c) $\frac{1}{\sqrt{2}}$ (d) $-\frac{1}{2}$ (e) $-\frac{1}{\sqrt{2}}$

(b)
$$-\frac{\sqrt{3}}{2}$$

(c)
$$\frac{1}{\sqrt{2}}$$

(d)
$$-\frac{1}{2}$$

11.
$$\int_{1}^{e} \frac{(\ln x)^{\frac{3}{2}}}{x} dx =$$
(a) $\frac{5}{2}$ b) 3 (c) $\frac{3}{2}$ (d) $\frac{2}{5}$ (e) $\frac{2}{3}$

(a)
$$\frac{5}{2}$$

b) 3 (c)
$$\frac{3}{2}$$

(d)
$$\frac{2}{5}$$

(e)
$$\frac{2}{3}$$

- A solid of revolution is obtained by rotating the part of the graph of $f(x) = \frac{1}{x}$ between x = 1 and x = 10 around the x-axis. Its volume is:
- (a) $\frac{9\pi}{10}$
- (b) 10π (c) $\pi \ln 10$ (d) $-\frac{\pi}{10}$ (e) $\frac{3\pi}{5}$

13.

A circle of radius 2 is shown in the figure at the left. The area of the shaded region is given by one of the following:

$$x^2 + y^2 = 4$$

(a)
$$2\int_{0}^{2} \sqrt{4-x^2} dx$$

(b)
$$\int_{-2}^{2} \sqrt{4 - x^2} dx$$

(c)
$$\int_{0}^{2} \pi x dx$$

(d)
$$\int_{0}^{4} \sqrt{4-x^2} \, dx$$

(e)
$$\pi \int_{0}^{2} \sqrt{4-x^2} dx + \pi \int_{-2}^{0} \sqrt{4-x^2} dx$$

14. On a small planet the acceleration due to gravity near the surface is 25 ft/sec². A person throws a rock upward with initial velocity 40 ft/sec. The time that it takes for the rock to reach its greatest height above the initial position is

- (a) 1.6 sec
- (b) 2.4 sec
- (c) 3.1 sec

(d) 1.1 sec

(e) 1.5 sec

15. In the definite integral
$$\int_{0}^{1} e^{x} \sin(e^{x}) dx \text{ let } u = e^{x}.$$

The resulting definite integral in u is

(a)
$$\int_{a}^{e} \sin u \, du$$

(b)
$$\int_{0}^{1} \sin u \, du$$

(c)
$$\int_{1}^{c} \cos u \, du$$

$$\int_{0}^{e} \sin u \, du \qquad (b) \int_{0}^{1} \sin u \, du \qquad (c) \int_{1}^{e} e^{u} \sin u \, du \qquad (e) \int_{0}^{e} e^{u} \sin u \, du$$

(e)
$$\int_{1}^{e} e^{u} \sin u \, du$$

Which of the following functions is a solution of the differential equation y" 16. + 4y = 0

(a)
$$y = e^{-t}$$

(b)
$$y = \sin t$$

(c)
$$y = \cos 2t$$

(d)
$$y = -2t^2$$

(a)
$$y = e^{-t}$$
 (b) $y = \sin t$
 (d) $y = -2t^2$ (e) $y = -3 + t^2$

Find the constant solutions (if any exist) of the differential equation $y' = t(y^2 - y - 6)$

(a)
$$y = 3$$
 and 3

(b)
$$y = 2$$
 only

(a)
$$y = 3$$
 and -2 (b) $y = 2$ only (c) $y = 2$, and -2 (d) $y = 2$

$$= -2$$
 only

$$= -2 \text{ only}$$
 (e) $y = 0$, and 2

Solve the initial value problem 18.

$$y' = \frac{t+1}{y} \quad y(0) = 4$$

(a)
$$y = \sqrt{t^2 + 2t + 16}$$
 (b) $y = \frac{t^2}{2} + t + 4$ (c) $y = 4(t - 1)^2$ (d) $y = \frac{1}{\sqrt{t^4 + t + 1}} + 4$ (e) $y = \ln(t + 1) + 4$

A function f(t) satisfies a differential equation y' = g(y). The graph of z = g(y) is as sketched below. Use this graph for the next 2 problems

19. The graph of the solution f(t) has an inflection point somewhere on one of the following intervals. Which one?

(a)
$$(-2,-1)$$
 (b) $\left(\frac{5}{6},\frac{7}{6}\right)$ (c) $(1,2)$ (d) $\left(0,\frac{1}{5}\right)$ (e) $\left(-\frac{1}{3},0\right)$

20. For this differential equation locate the <u>stable</u> equilibrium states.

(a)
$$y = -1$$
 and $y = 1$ (b) $y = 1$ only (c) $y = 0$ and $y = 2$

(b)
$$y = 1$$
 only

(c)
$$y = 0$$
 and $y = 2$

(d)
$$y = 2$$
 only

(e)
$$y = -1$$
 only

Which of the following sketches most closely resembles the solutions of 21. the differential equation y' = y(y + 2).

(d)

The scores on a test taken by 20 people are given in the table below. Use this table for problems 22 and 23.

 Score
 60
 70
 80
 90

 frequency
 2
 8
 7
 3

- 22. The relative frequency of the score 80 is (correct to 2 decimal places).
 - (a) 0.35
- (b) 7(c) 0.25
- (d) 1.22
- (e) 0.73

- 23. The median score for all 20 test takers is
 - (a) 75
- (b) 85
- (c) 72
- (d) 80
- (e) 78

A random variable X has outcomes and probability distribution shown in the table below

k I	P(X = k)
0	1/8
1	3/8
-1	1/8
3	3/8

- The expected value of X is 24.
- (a) $\frac{11}{8}$ (b) $\frac{3}{8}$ (c) 2 (d) $\frac{13}{8}$ (e) $\frac{15}{8}$

- A new random variable Y is given by $Y = X^2$ where X is the random variable 25. of the preceding problem. The probability $P(X^2 = 1)$ is
 - (a) $\frac{4}{8}$ (b) $\frac{3}{8}$ (c) $\frac{5}{8}$ (d) $\frac{7}{8}$ (e) $\frac{2}{8}$

- The odds in favor of your horse winning are 5 to 7. The probability that your 26. horse will win is
 - (a) $\frac{5}{12}$ (b) $\frac{5}{7}$ (c) $\frac{2}{7}$ (d) $\frac{2}{5}$ (e) $\frac{12}{35}$

27.	An apppliance costs \$100 and the customer is considering purchasing
	insurance covering replacement in the event that the appliance breaks down
	within a year. If the rate of breakdowns is known to be 30% what is the most
	that the customer should pay for this insurance?

- (a) \$30
- (b) \$20
- (c) \$40
- (d) \$50
- (e) \$60

A test for a certain disease is 90% accurate in the sense that a positive result will occur 90% of the time if the patient does have the disease. The following tree diagram shows the relevant probabilities (D means patient has disease, H means patient does not have the disease.)

Compute the following probabilities

- 28. P(+ and D)
 - (a) .0090
- (b) .01
- (c) .90
- (d) .99
- (e) .10

29.
$$P(+) =$$

- (a) .108 (b) .009 (c) (0.90) (d) .90 (e) 1.0

30.
$$P(D | +) =$$

- (a) .08 (b) .05 (c) .90 (d) .20 (e) .10