Brief Article

The Author

October 29, 2004

This exam is worth a total of 100 points. There are 11 problems - 8 multiple choice and 3 partial credit. Each multiple choice problem is worth 7 points. Point values are assigned next to the partial credit problems. Please show all work on the partial credit section of the test inside the test booklet. Use the front sheet to answer the multiple choice section by putting a \times in the appropriate box. You will have until 9:20am to complete the exam. Good luck!

[^0]$6=2.5 \mathrm{in}=0.8 \mathrm{~cm}=1 \mathrm{~cm}=0.4 \mathrm{~cm}=1$ Evaluate $\int x^{2}+\frac{1}{3} e^{-2} e^{-2} \infty 13 e^{-2}$ $3 \sin (2 x) d x$.

How long will it take an amount of money to $\frac{1}{3} x^{3}-3 \cos (2 x)+C \frac{1}{3} x^{3}-\frac{3}{2} \cos (2 x)+C \frac{1}{3} x^{3}+$
$\frac{3}{2} \cos (2 x)+C 3 x^{3}-3 \cos (2 x)+C 3 x^{3}+6 \cos (2 x)+$
C

Evaluate $\int \ln x d x$
$x \ln x-x+C \frac{1}{x}+C \frac{1}{2}(\ln x)^{2}+C \frac{\ln x}{x}+C \frac{e^{x}}{x}+C$
The marginal cost function for a company is given by $M C(x)=3 x^{2}-17 x+2000$. If the fixed costs for the company are $\$ 12,000$, what is the total cost function $\mathrm{C}(\mathrm{x})$?
$x^{3}-\frac{17}{2} x^{2}+2000 x-12,0003 x^{3}-17 x^{2}+2000 x-$ $12,000 x^{3}-\frac{17}{2} x^{2}+2000 x+12,000 x^{3}-\frac{17}{2} x^{2}+$ $2000 x$ It cannot be determined from the information provided.

Consider the following graph of the supply curve, $\mathrm{S}(\mathrm{q})$, and the demand curve, $\mathrm{D}(\mathrm{q})$ for a certain item. Which region/regions denoted on the graph correspond to the consumer's surplus?
$A+B$ B A A $+B+C B+C$
Determine the average value of the function $y=$ $\cos x$ between $x=0$ and $x=\frac{\pi}{2}$.
$202 \pi \frac{\pi}{2} \frac{2}{\pi}$
Find the area underneath the curve $y=e^{-x / 3}$ for $x \geq 6$.
b. What is the equilibrium price p_{e} ?
c. Compute the consumer surplus.
d. Compute the producer surplus.

Find the area between the curves $y=x^{2} e^{2 x}$ and $y=0$ from $x=0$ to $x=1$. (Note that the first function always has a positive value, so it is
(16 points) Suppose that the demand curve for producing a quantity q of some item is given by:

$$
D(q)=\frac{50}{q+1}
$$

and the supply curve is given by:

$$
S(q)=q+6 .
$$

a. What is the equilibrium quantity q_{e} ?
always greater than or equal to 0 .) (12 points)

[^0]: Sign your name

