Brief Article

The Author

October 29, 2004
$==2.5 \mathrm{~cm}=$ usual $=0$ October 29, 1997 Math 108, Exam 2
This exam is worth a total of 100 points. Ther and 3 partial credit. Each multiple choice pro are assigned next to the partial credit problems credit section of the test inside the test bookle multiple choice section by putting a x in the 9:20am to complete the exam. Good luck!

Sign your name

$6=2.5 \mathrm{in}=0.8 \mathrm{~cm}=1 \mathrm{~cm}=0.4 \mathrm{~cm}=1$ Find the constant solutions of the differential equation $y^{\prime}=$ $y^{3}+5 y^{2}-24 y$.
$y=0, \quad y=3, \quad y=-8 y=0, \quad y=-6, \quad y=4$ $y=0, \quad y=2, \quad y=-12 y=3, \quad y=-8$ $y=-6, \quad y=4$

Determine the relationship of the two lines:

$$
x-3 y=6,2 x+y=-1
$$

Cannot be determined. The lines are parallel. They are the same line. There are infinitely many solutions. There is a unique solution.

The function $y=t^{2}+3 t+7$ is a solution to which of the following differential equations?
$y^{\prime}-y=-t^{2}-4\left(y^{\prime}\right)^{2}-4 y=-19\left(y^{\prime}\right)^{2}-y=2$
$y^{\prime}-y=t^{2}+6 y^{\prime}=y^{2}+14$

If $\vec{x}=(1,3,-2,0)$ and $\vec{y}=(-1,2,4,-6)$ are two vectors in \Re^{4}, determine $(2 \vec{x}) \cdot(-3 \vec{y})$.
$(6,-36,48,0) 1854(5,0,-16,9)-42$

An experimenter reports that a certain strain of bacteria grows at a rate proportional to the square of the size of the population. Set up a differential equation which describes the growth of the population and has a solution $y=f(t)$ where $f(t)$ is the size of the population at any time t.
$\left(y^{\prime}\right)^{2}=k y^{\prime}=k^{2} y y^{\prime}=k y y^{\prime}=k y^{2} y^{\prime}=k t^{2}$

Determine the solution of the differential equation $y^{\prime}=6 t-5 t^{2}$.
$6-10 t 6 t^{2}-5 t^{3}+C 3 t^{2}-5 t^{3}+C 3 t^{2}-\frac{5}{3} t^{3}+C$ None of the above

What is the length of the vector $\vec{x}=(-2,4,2,5) ?$
$749 \sqrt{41} 941$

Given the differential equation $y^{\prime}=(y-2)(y+3)$, determine which of the following is true for the constant solutions $y=2$ and $y=-3$.
$y=-3$ is unstable and $y=2$ is stable. $y=2$ is stable and $y=-3$ is stable. $y=2$ is unstable and $y=-3$ is stable. $y=-3$ is unstable and $y=2$ is unstable. None of the above.

Solve the following separable differential equation with the given initial value. Recall that $e^{x y}=\left(e^{y}\right)^{x}$ and that $e^{(\ldots)+C}=A e^{(\ldots)}$.
(12 points)

$$
y^{\prime}=\frac{y^{2}+6}{y t}, \quad y(1)=3
$$

amount of money in the account at any time t.
b) Sketch some solutions of this differential equation.
c) Given that the person initially deposits $\$ 3000$, solve the differential equation to determine $M(t)$ - the amount of money in the account at any time t.
(20 points)

A certain individual decides to open an Individual Retirement Account (IRA). This person makes continuous deposits of $\$ 2000$ each year. The interest rate is 5%.
a) Find the differential equation whose solution is given by the function $M(t)$ where $M(t)$ is the

$$
x_{1}-3 x_{2}+x_{3}-2 x_{4}=13 x_{1}-6 x_{2}+12 x_{3}-6 x_{4}=34 x_{1}-9 x_{2}+13 x_{3}-8 x_{4}=4-2 x_{1}+7 x_{2}+x_{3}+4 x_{4}=-2
$$

