\mathbf{T}	•	C	٨		. •	, 1	
К	r_1	et.	Α	\mathbf{r}^{1}	1.1	C	le

The Author

October 29, 2004

This exam is worth a total of 100 points. There a and 3 partial credit. Each multiple choice proble =2.5cm=usual =0 October 29, 1997 Math 108, Exam 2 are assigned next to the partial credit problems. credit section of the test inside the test booklet. multiple choice section by putting a \times in the ap 9:20am to complete the exam. Good luck!

Sign	vour	name
SIEII	your	name

6=2.5in =0.8cm =1cm =0.4cm=1 Find the constant solutions of the differential equation $y' = y^3 + 5y^2 - 24y$.

$$y = 0$$
, $y = 3$, $y = -8$ $y = 0$, $y = -6$, $y = 4$
 $y = 0$, $y = 2$, $y = -12$ $y = 3$, $y = -8$
 $y = -6$, $y = 4$

Determine the relationship of the two lines:

$$x - 3y = 6, 2x + y = -1.$$

Cannot be determined. The lines are parallel. They are the same line. There are infinitely many solutions. There is a unique solution.

The function $y = t^2 + 3t + 7$ is a solution to which of the following differential equations?

$$y' - y = -t^2 - 4 (y')^2 - 4y = -19 (y')^2 - y = 2$$

 $y' - y = t^2 + 6 y' = y^2 + 14$

If $\vec{x} = (1, 3, -2, 0)$ and $\vec{y} = (-1, 2, 4, -6)$ are two vectors in \Re^4 , determine $(2\vec{x}) \cdot (-3\vec{y})$.

$$(6, -36, 48, 0)$$
 18 54 $(5, 0, -16, 9)$ -42

An experimenter reports that a certain strain of bacteria grows at a rate proportional to the square of the size of the population. Set up a differential equation which describes the growth of the population and has a solution y = f(t) where f(t) is the size of the population at any time t.

$$(y')^2 = k \ y' = k^2 y \ y' = k y \ y' = k y^2 \ y' = k t^2$$

Determine the solution of the differential equation $y' = 6t - 5t^2$.

$$6 - 10t \ 6t^2 - 5t^3 + C \ 3t^2 - 5t^3 + C \ 3t^2 - \frac{5}{3}t^3 + C$$
 None of the above

What is the length of the vector $\vec{x} = (-2, 4, 2, 5)$?

$$7\ 49\ \sqrt{41}\ 9\ 41$$

Given the differential equation y' = (y-2)(y+3), determine which of the following is true for the constant solutions y = 2 and y = -3.

y = -3 is unstable and y = 2 is stable. y = 2 is stable and y = -3 is stable. y = 2 is unstable and y = -3 is stable. y = -3 is unstable and y = 2 is unstable. None of the above.

Solve the following separable differential equation with the given initial value. Recall that $e^{xy} = (e^y)^x$ and that $e^{(\dots)+C} = Ae^{(\dots)}$.

(12 points)

$$y' = \frac{y^2 + 6}{yt},$$
 $y(1) = 3$

b) Sketch some solutions of this differential equation.

c) Given that the person initially deposits \$3000, solve the differential equation to determine M(t) - the amount of money in the account at any time t.

Evaluate the following system of linear equations using Gaussian elimination. Your answer should be of the form $x_i = ?.$ (12 points)

$$x_1 - 3x_2 + x_3 - 2x_4 = 13x_1 - 6x_2 + 12x_3 - 6x_4 = 34x_1 - 9x_2$$

(20 points)

A certain individual decides to open an Individual Retirement Account (IRA). This person makes continuous deposits of \$2000 each year. The interest rate is 5%.

a) Find the differential equation whose solution is given by the function M(t) where M(t) is the amount of money in the account at any time t.