Brief Article

The Author

October 29, 2004

This exam is worth a total of 100 points. There are 11 problem and 3 partial credit. Each multiple choice problem is worth 7 $=3$ December 3, 1997 Math 108, Exam $3 \begin{gathered}\text { are assigned next to the partial credit problems. Please show al } \\ \text { crection of the test inside the test booklet. Use the front }\end{gathered}$ multiple choice section by putting a x in the appropriate box 9:20am to complete the exam. Good luck!

Sign your name

$6=2.5 \mathrm{in}=0.8 \mathrm{~cm}=1 \mathrm{~cm}=0.4 \mathrm{~cm}=1$

Find the value of k which makes $f(x)=3 x^{2}+k x$ a probability density function on the interval $0 \leq$ $x \leq 2$.
$k=\frac{3}{2} k=\frac{-5}{8} k=\frac{-7}{2} k=2 k=-3$
It is given that $(3,3)$ is a critical point of a function $f(x, y)$. If $f(x, y)=6, f(x, y)=6 y$ and $f(x, y)$ -6 , then what can be said of $(3,3)$?
$(3,3)$ is a relative minimum. $(3,3)$ is a relative maximum. $(3,3)$ is a saddle point. The test is inconclusive. There is not enough information to determine this.

Suppose that the amount of time required to serve a customer at a bank has an exponential density function with $\mu=5$. What is the probability that the customer will be served in one minute or less? (i.e. determine $P(0 \leq X \leq 1)$.)
$e^{\frac{-1}{5}} 1+e^{\frac{-1}{5}} 1-e^{\frac{-1}{5}} \frac{1}{5} e^{\frac{-1}{5}} 1-\frac{1}{5} e^{\frac{-1}{5}}$

Find the equation of the plane which has x -intercept $(3,0,0)$, y-intercept $(0,-2,0)$ and z-intercept $(0,0,6)$.
$z=6-3 x+2 y z=6-2 x+3 y z=6+\frac{1}{2} x-\frac{1}{3} y$
$z=6-\frac{1}{2} x+\frac{1}{3} y z=6+3 x-2 y$
Consider the following probability table.

Outcome	0	1	2	3	4	5
Probability	$\frac{1}{9}$	$\frac{1}{18}$	$\frac{1}{6}$	$\frac{5}{18}$	$\frac{2}{9}$	$\frac{1}{6}$

What is the expected value $\mathrm{E}(\mathrm{X})$?
$\begin{array}{lllll}\frac{31}{57} & \frac{55}{18} & \frac{1200}{104976} & \frac{152}{74} & \frac{53}{18}\end{array}$
Determine the cumulative distribution function for the probability density function $f(x)=\frac{3 \sqrt{x}}{16}$ for $0 \leq x \leq 4$.
$F(x)=\frac{3}{16} x^{\frac{1}{2}} F(x)=\frac{3}{32} x^{\frac{-1}{2}} F(x)=\frac{1}{8} x^{\frac{3}{2}} F(x)=$ $\frac{1}{12} x^{2} F(x)=\frac{1}{3} x^{\frac{-1}{2}}$

Compute f for the function $f(x, y)=x^{2} y e^{2 x y-x^{3}}$.
$2 x y e^{2 x y-x^{3}}+x^{2} y\left(2 y-3 x^{2}\right)\left(e^{2 x y-x^{3}}\right) 2 x y e^{2 x y-x^{3}}+$ $x^{2} y e^{2 x y-x^{3}} 2 x y e^{2 x y-x^{3}}\left(2 y-3 x^{2}\right) 2 x y+(2 y-$ $\left.3 x^{2}\right)\left(e^{2 x y-x^{3}}\right) 2 x y e^{2 x y-x^{3}}$

The time in minutes required to complete an assembly on a production line is a random variable X with probability density function $f(x)=2 x$ for $0 \leq x \leq 1$. It is given that $E(X)=\mu=\frac{2}{3}$. Compute the variance $\operatorname{Var}(\mathrm{X})$.
$\frac{1}{9} \frac{4}{9} \frac{2}{13} \frac{1}{3 \sqrt{2}} \frac{1}{18}$
Find the critical points of the function $f(x, y)=$ $x^{2}+4 x y+2 y^{4}$ and determine whether they are relative maxima, relative minima, or saddle points. (Hint: You should find three critical points.) (22
points)

Suppose that you are being asked to analyze the income for a company whose total profit fits into the following chart.

Year	1	2	3
Profit	2	5	7

What is the regression line for these data points? (Use the least squares method.) (22 points)

What would be your prediction for the profits for the fourth year?

A company determines that its production function is given by $f(x, y)=72 x^{\frac{1}{4}} y^{\frac{3}{4}}$ where x is the amount of capital and y is the amount of labor. Suppose capital costs $\$ 9$ per unit and labor costs $\$ 18$ per unit. The company has a budget of $\$ 12,000$. Find the amounts of labor and capital which will maximize the company's production while keeping within the constraints of the bud-
get. (22 points)

