\mathbf{T}	•	C	٨		٠.	, 1	
К	r_1	et.	А	\mathbf{r}^{1}	1.1	C	le

The Author

October 29, 2004

and 3 partial credit. Each multiple choice problem is worth 7 are assigned next to the partial credit problems. Please show a credit section of the test inside the test booklet. Use the front

multiple choice section by putting a \times in the appropriate box

This exam is worth a total of 100 points. There are 11 problem

9:20am to complete the exam. Good luck!

Sign your name

$$6=2.5$$
in $=0.8$ cm $=1$ cm $=0.4$ cm $=1$

Find the value of k which makes $f(x) = 3x^2 + kx$ a probability density function on the interval $0 \le x \le 2$.

$$k = \frac{3}{2} \ k = \frac{-5}{8} \ k = \frac{-7}{2} \ k = 2 \ k = -3$$

It is given that (3,3) is a critical point of a function f(x,y). If f(x,y)=6, f(x,y)=6y and f(x,y)=6, then what can be said of (3,3)?

(3,3) is a relative minimum. (3,3) is a relative maximum. (3,3) is a saddle point. The test is inconclusive. There is not enough information to determine this.

Suppose that the amount of time required to serve a customer at a bank has an exponential density function with $\mu = 5$. What is the probability that the customer will be served in one minute or less? (i.e. determine $P(0 \le X \le 1)$.)

$$e^{\frac{-1}{5}} \ 1 + e^{\frac{-1}{5}} \ 1 - e^{\frac{-1}{5}} \ \frac{1}{5} e^{\frac{-1}{5}} \ 1 - \frac{1}{5} e^{\frac{-1}{5}}$$

Find the equation of the plane which has x-intercept (3,0,0), y-intercept (0,-2,0) and z-intercept (0,0,6).

$$z = 6 - 3x + 2y \ z = 6 - 2x + 3y \ z = 6 + \frac{1}{2}x - \frac{1}{3}y$$

$$z = 6 - \frac{1}{2}x + \frac{1}{3}y \ z = 6 + 3x - 2y$$

Consider the following probability table.

Outcome	0	1	2	3	4	5
Probability	$\frac{1}{9}$	$\frac{1}{18}$	$\frac{1}{6}$	$\frac{5}{18}$	$\frac{2}{9}$	$\frac{1}{6}$

What is the expected value E(X)?

$$\frac{31}{57}$$
 $\frac{55}{18}$ $\frac{1200}{104976}$ $\frac{152}{74}$ $\frac{53}{18}$

Determine the cumulative distribution function for the probability density function $f(x) = \frac{3\sqrt{x}}{16}$ for $0 \le x \le 4$.

$$F(x)=\frac{3}{16}x^{\frac{1}{2}}\ F(x)=\frac{3}{32}x^{\frac{-1}{2}}\ F(x)=\frac{1}{8}x^{\frac{3}{2}}\ F(x)=\frac{1}{12}x^{2}\ F(x)=\frac{1}{3}x^{\frac{-1}{2}}$$

Compute f for the function $f(x,y) = x^2 y e^{2xy-x^3}$.

$$2xye^{2xy-x^3} + x^2y(2y-3x^2)(e^{2xy-x^3}) 2xye^{2xy-x^3} + x^2ye^{2xy-x^3} 2xye^{2xy-x^3}(2y-3x^2) 2xy + (2y-3x^2)(e^{2xy-x^3}) 2xye^{2xy-x^3}$$

The time in minutes required to complete an assembly on a production line is a random variable X with probability density function f(x) = 2x for $0 \le x \le 1$. It is given that $E(X) = \mu = \frac{2}{3}$. Compute the variance Var(X).

$$\frac{1}{9} \quad \frac{4}{9} \quad \frac{2}{13} \quad \frac{1}{3\sqrt{2}} \quad \frac{1}{18}$$

Find the critical points of the function $f(x, y) = x^2 + 4xy + 2y^4$ and determine whether they are relative maxima, relative minima, or saddle points. (Hint: You should find three critical points.) (22

points)

What would be your prediction for the profits for the fourth year?

A company determines that its production function is given by $f(x,y) = 72x^{\frac{1}{4}}y^{\frac{3}{4}}$ where x is the amount of capital and y is the amount of labor. Suppose capital costs \$9 per unit and labor costs \$18 per unit. The company has a budget of \$12,000. Find the amounts of labor and capital which will maximize the company's production while keeping within the constraints of the bud-

Suppose that you are being asked to analyze the income for a company whose total profit fits into the following chart.

Year	1	2	3
Profit	2	5	7

What is the regression line for these data points? (Use the least squares method.) (22 points)

get. (22 points)