[11pt]article graphicx amssymb epstopdf .tifpng.png‘convert 1 'dirname 1 '/'basename 1 .tif'.png $=6.5 \mathrm{in}=9 \mathrm{in}=0.0 \mathrm{in}=0.0 \mathrm{in}=0.0 \mathrm{in}=0.0 \mathrm{in}=0.0 \mathrm{in}$
theoremTheorem corollary[theorem]Corollary definitionDefinition

Brief Article The Author document
minipage[c]6in 1. Please cross \times the correct answers.
$[-2 \mathrm{~mm}] 0 \mathrm{~mm} 8 \mathrm{~mm}$ Sign your name: $\mathbf{6 c m} \mathbf{6 c m} 10=2.2 \mathrm{in}=0.8 \mathrm{~cm}=1 \mathrm{~cm}=0.4 \mathrm{~cm}=1$ Compute the definite integral $\int_{0}^{1} x e^{x} d x=$
$1 e-1 e-e-1$

Assume a certain amount of money is in a bank account with an annual interest rate of 10% compounded continuously. Compute the number of years it takes until the amount triples.
$10 \ln 31017205 \ln 3$

Compute the improper integral

$$
\int_{2}^{\infty} x^{-4} d x
$$

$1241318-112-16$

A company determines that its marginal profit function is $M P(x)=-300 x^{2}+600 x+400$. If the company makes $\$ 300$ when it sells 2 items, what is the total profit function?

$$
\begin{aligned}
& -100 x^{3}+300 x^{2}+400 x-900-100 x^{3}+300 x^{2}+400 x-100 x^{3}+300 x^{2}+400 x+300-100 x^{3}+300 x^{2}+400 x+150 \\
& -100 x^{3}+300 x^{2}+400 x-750
\end{aligned}
$$

Solve the following differential equation with given initial condition:

$$
y^{\prime}=13 y-1, \quad y(0)=1
$$

$f(t)=3-2 e^{13 t} f(t)=4-2 e^{13 t} f(t)=3-12 e^{13 t} f(t)=3-e^{12 t} f(t)=5-e^{3 t}$
Assume $y^{\prime}=t^{3}$ and $y(0)=1$. Compute $y(2)$.

539012

Find the equation of the plane through the points $(3,0,0),(0,4,0)$ and $(0,0,2)$.
$4 x+3 y+6 z=12 x+34 y+2 z=38 x+4 y+2 z=813 x+14 y+12 z=016 x+13 y+12 z=4$

For what value of k does the following system of equations have no solution?

$$
\operatorname{arrayrcl} 9 x-6 y=-31
$$

$k=10 k=-10 k=231 k=90 k=23$

Determine which of the following functions is a solution of the differential equation $y^{\prime \prime}-6 y^{\prime}+8 y=0$.
$e^{4 t} e^{8 t} e^{5 t} e^{6 t} e^{-5 t}$

A continuous random variable X has a probability density function $f(x)=38 x^{2}$ for $0 \leq x \leq 2$. What is the expected value $E(X)$?

3231615243

Find the line of least squares $y=a x+b$ which best fits the data points $(-3,-5),(1,3)$ and $(2,5)$.
$y=2 x+1 y=3 x+2 y=x+1 y=5 x+4 y=3 x$

Consider the function $f(x, y)=-6 x^{2}-7 x y-2 y^{2}$. Then one has:
$(0,0)$ is a saddle point. $(0,0)$ is a relative minimum. $(0,0)$ is a relative maximum. The second derivative test is inconclusive. There are no critical points.

Let X be a discrete random variable whose distribution is given by

$$
\operatorname{array}|c| c|c| c|c| c|c| c \mid x 2468101214
$$

Compute the Variance $\operatorname{Var}(X)$.

485275365125325

Let Z have the standard normal distribution. Compute $\operatorname{Pr}(1 \leq Z)$.
0.34130 .5000 .15870 .84130 .6742
(13 pts) The demand curve of a certain item is $p=D(q)=100 q+1$ and its supply curve is $p=S(q)=q+1$.
(6 pts) Find the equilibrium price p_{e} and equilibrium quantity $q_{e} .{ }^{*} 8 \mathrm{~cm}$
(6 pts) Compute the producer surplus.

* 8 cm
(13 pts) A person opens an Individual Retirement Account (IRA) with the initial amount of $\$ 50,000$. Then $\$ 6,000$ per year is deposited in this IRA in a uniform and continuous manner. Assume that the interest rate is 7.5% compounded continuously.
(4 pts) Model this problem as a Calculus problem by finding a differential equation and an initial condition describing the amount of money, $M(t)$, in the IRA at any time t.
* 4 cm
(5 pts) Solve the obtained differential equation, i.e. find $M(t)$ at any time t.
* 8 cm
(4 pts) Compute the balance in the IRA after 20 years. (If you do not have a calculator you can approximate $e^{1.5}$ with 4.5).
* 4 cm
(13 pts) The Cobb-Douglas production function for a certain product is given by $f(x, y)=5 x^{35} y^{25}$ where $f(x, y)$ is the quantity produced, x denotes units of labor force and y denotes units of capital. Assume that each unit of labor costs $\$ 400$, each unit of capital costs $\$ 100$, and the total budget is $\$ 20,000$. Find the amounts of labor and capital which will maximize the company's production while keeping within the constraints of the budget.
* 15 cm

Answer: $[-3 \mathrm{~mm}] 0 \mathrm{~cm} 8 \mathrm{~mm} x=2 \mathrm{~cm} y=2 \mathrm{~cm}$
(13 pts) A bank has 1,000,000 credit card holders. During the preceding year the average billing to each card holder was $\$ 195$ and the standard deviation was $\$ 60$. It is assumed that the billings are normally distributed. Compute the number of customers whose bill exceeds $\$ 300$.

* 18 cm

Answer: $[-3 \mathrm{~mm}] 0 \mathrm{~cm} 8 \mathrm{mmNumber}=2 \mathrm{~cm}$

