## Math 108 <br> Final Solutions

1. 

(a.) We solve $D(q)=S(q)$ or $\frac{125}{q+1}=(q+1)^{2}$ or $(q+1)^{3}=125$ or $q+1=5$ or $q_{e}=4$. Then $p_{e}=(4+1)^{2}$ or $p_{e}=25$.
(b.) The consumer surplus is

$$
C S=\int_{0}^{4} \frac{125}{q+1} d q-4 \cdot 25=\left.125 \ln (q+1)\right|_{0} ^{4}-100=125 \ln 5-100
$$

(c.) The producer surplus is

$$
P S=100-\int_{0}^{4}(q+1)^{2} d q=100-\left.\frac{1}{3}(q+1)^{3}\right|_{0} ^{4}=100-\frac{125-1}{3}=\frac{176}{3} .
$$

2. We have

$$
\frac{\partial P}{\partial x}=10-0.02(2 x+y) \text { and } \frac{\partial P}{\partial y}=16-0.02(x+6 y)
$$

To find the critical points, we solve $\frac{\partial P}{\partial x}=0$ and $\frac{\partial P}{\partial y}=0$. This is $10-0.02(2 x+y)=0$ and $16-0.02(x+6 y)=0$. Computing gives $2 x+y=500$ and $x+6 y=800$. Solving gives $x=200$ and $6=100$. To use the second derivative test we need

$$
\frac{\partial^{2} P}{\partial x^{2}}=-0.04 \frac{\partial^{2} P}{\partial y^{2}}=-0.12, \frac{\partial^{2} P}{\partial x \partial y}=-0.02
$$

Then

$$
D=\left(\frac{\partial^{2} P}{\partial x^{2}}\right)\left(\frac{\partial^{2} P}{\partial y^{2}}\right)-\left(\frac{\partial P}{\partial x \partial y}\right)^{2}=(-0.04)(-0.12)-(0.02)^{2}
$$

Since $D=0.0044>0$ and $\frac{\partial^{2} P}{\partial x^{2}}=-0.04<0$, the values $x=200$ and $y=10$ maximize the profit. Then we compute that the maximum profit is $P(200,100)=1,000$.
3. ( Answer: $q_{e}=5, p_{e}=25$ )

