The diagram below depicts the cable over the center span of a suspension bridge. The line at d represents one of the towers and s is the sag in the cable. The tension at 0 is T_0 and that over the point x is T_x . Let w be the total weight per foot that the cable supports.

Let y = f(x) with $0 \le x \le d$ be the function whose graph is the curve of the cable.

- i) Explain why $T_0 = T_x \cos \theta$ and $wx = T_x \sin \theta$.
- ii) Show that $f'(x) = \frac{wx}{T_0} = \frac{w}{T_0} x$.
- iii) Show that $f(x) = \frac{w}{2T_0} x^2$.
- iv) Show that $T_0 = \frac{1}{2} \frac{wd^2}{s}$
- v) Show that $T_x = w \sqrt{\frac{1}{4} \frac{d^4}{s^2} + x^2}$

vi) Compute the maximal tension in the cable of a bridge for which the parameters are $w = 20,000$ pounds per foot, $d = 2000$ feet, and $s = 300$ feet.	