\qquad

The diagram below depicts the cable over the center span of a suspension bridge. The line at d represents one of the towers and s is the sag in the cable. The tension at 0 is T_{0} and that over the point x is T_{x}. Let w be the total weight per foot that the cable supports.

Let $y=f(x)$ with $0 \leq x \leq d$ be the function whose graph is the curve of the cable.
i) Explain why $\mathrm{T}_{0}=\mathrm{T}_{\mathrm{x}} \cos \theta$ and $\mathrm{wx}=\mathrm{T}_{\mathrm{x}} \sin \theta$.
ii) Show that $f^{\prime}(x)=\frac{w x}{T_{0}}=\frac{w}{T_{0}} x$.
iii) Show that $f(x)=\frac{w}{2 T_{0}} x^{2}$.
iv) Show that $T_{0}=\frac{1}{2} \frac{\mathrm{wd}^{2}}{\mathrm{~s}}$
v) Show that $T_{x}=w \sqrt{\frac{1}{4} \frac{d^{4}}{s^{2}}+x^{2}}$
vi) Compute the maximal tension in the cable of a bridge for which the parameters are $w=20,000$ pounds per foot, $d=2000$ feet, and $s=300$ feet.

