MATH 111 PRACTICE TEST 1

- 1.(8 points) Find the equation of the line passing through (-1, 3) and parallel to the line 2x + y=3.
- 2.(8 points) Find the equation of the line with y-intercept = 3 and passing through (1, -2).

3.(8 points) Find the domain of the function $f(x) = \frac{1}{(x^2 + 1)(x^2 - 3x - 4)}$.

4.(8 points) Let $f(x) = \begin{cases} -x^2 + x + 1 & \text{for } x \ge 0 \\ x^2 - x + 1 & \text{for } x < 0 \end{cases}$ Then $f(2) = ___$ and $f(-2) = ___$

5.(9 points) Let $f(t) = \frac{1}{t+2}$; $g(t) = \frac{1}{t+1}$ and $h(t) = f(t) \times g(t)$ a. f(g(2)) =Then b. g (f(2)) = c. h $(\frac{1}{2})$ = _____

6.(6 points) Simplify $(27)^{6}$ $(36)^{4}$

7.(8 points) Find the point(s) of intersection of the curves

$$y = x^2 + 5x - 6$$
 and $y = 2x^2 + 3x - 9$

8.(9 points) Let $g(x) = x^2 + 2x - 1$ a. (g(2 + h) - g(2))/h =b. $\lim_{h \emptyset 0} \frac{g(2 + h) - g(2)}{h} =$ _____ Find c. g′(2)

9.(10 points) Let $f(x) = \sqrt[4]{x^3}$ Then a. f'(x) =b. f'(16) =

10.(10 points) Let $f(x) = \sqrt{x}$

- a. The slope of the tangent line at x = 4
- b. Find the equation of the tangent line of part a.

11.(8 points) a. $\lim_{x \varnothing 3} (\sqrt{x^2 - 5} / x + 1) =$ b. $\lim_{x \varnothing 0} \frac{\sqrt{x + 9} - 3}{x} =$

12.(8 points) Let $\lim_{x \boxtimes 1} f(x) = 2$ and $\lim_{x \boxtimes 1} g(x) = 4$

Find	a.	lim x ∅ 1	$\frac{1}{5}$ f(x)	=	
	b.	lim x ∅ 1	<u>g (x)</u> f (x) + 3	=	

13. (6 points) What is the equation of the line with y – intercept = 2 and parallel to the line 3x - 4y = 1? ANSWER: _____

14. (6 points) What is the slope of the line perpendicular to the line 2x + 3y = 2? ANSWER: _____

15. (8 points) The line 2x + 3y = -1 has (i) y - intercept =(ii) slope =

16. (6 points) What is the slope of the line passing through (1, -2) and (3, 1)?

ANSWER: _____

17. (6 points) What is the domain of f (x) = $\frac{1}{\sqrt{9-x^2}}$? Give your answer in interval form, eg (a, b) etc.

ANSWER: _____

18. (6 points) Let $f(x) = \begin{cases} -3x + x^2 & x < 3 \\ 2x - 1 & x \ge 3 \end{cases}$ (i) f(3) =______ (ii) f(-2) =______

19. (12 points) Let $f(t) = \frac{1}{\sqrt{4 - t^2}}$ g $(t) = \sqrt{4 - t^2}$

Then (i) f(g(t)) = _____

(ii) f (g (1)) = ______
(iii) g (f (t)) = ______
(iv) g (f (1)) = ______

20. (6 points) The curve of $y = x^3 - 3x^2 + 2x$ crosses the x – axis at x = ANSWER:

21. (8 points) What are the points of intersection of y = x - 1 and $y = x^2 - 5x - 8$? ANSWER: _____

22. (6 points) $((-27)^{\frac{1}{4}})^{\frac{4}{3}} =$ ANSWER: _____

11. (6 points) Let $g(x) = x^2 + x$ Then g(2 + h) - g(2) =ANSWER:

23. (8 points) Let
$$f(x) = \sqrt[4]{x}$$

Then (i) $f'(x) =$
(ii) $f'(16) =$

24. (8 points) Let g (x) = $1/\sqrt{x}$ Then (i) g' (x) = ______ (ii) g' (4) = ______

- 25. (8 points) The graph y = f(x) has dervative $f'(x) = x^2 2x$. (i) What is the slope of the tagent line at x = -1?
 - (ii) What is the equation of the tagent line passing through (-1, 4)?