date: the $18^{\text {th }}$ of September, 1998
place: room 221 Hayes
time: 8:30-9:20

111-Exam I

This exam contains 10 problems worth 10 points each. You may use only a blank sheet of paper, a pencil, a rubber gum eraser, a ruler and a small calculator. You can use your calculator only to add, substract, multiply or divide two numbers. This exam is taken under the honor code.

Name:

Recommendation

Never give a "solitaire" answer without justifying it by previous calculations or reasoning.

Problems

1. Calculate $f^{\prime}(25)$ if $f(x)=2 x^{1.5}$.
2. Write down the equation of the line passing through the points $(1,2)$ and $(3,-4)$, and draw this line as accurate as possible.
3. Decide whether the lines $y=2 x-1$ and $y=-\frac{1}{2} x+3$ are parallel, perpendicular or neither, and calculate the coordinates of an intersection point.
4. Simplify as much as possible the following algebraic expression:

$$
\frac{x^{\frac{1}{2}} y^{3} x^{2}}{y^{2} x^{\frac{3}{2}}}
$$

5. Factor the polynomial $x^{2}-7 x+5$. (Hint: First use the quadratic formula to find the roots.)
6. Calculate and bring to the simplest form you can the composition $f(g(x))$ where $f(x)=x^{2}+3 x+1$ and $g(x)=x-2$.
7. An amount of $\$ 1783$ is deposited at 4.5% interest per year. If this interest is computed monthly, what will be the amount after 2 years?
8. Let $f(x)=x^{2}-2 x+3$ be a function, and let M be a point on the graph of this function having one coordinate $x=2$. Write down the equation of the tangent line to the graph at M. (Hint: First calculate the y-coordinate of M, and the slope of the graph at M.)
9. Let $f(x)=\frac{2}{x-1}$ be a function. Calculate $f^{\prime}(3)$ using the definition with limits.
10. Suppose that a vehicle is traveling on a line and its position function is given by $s=3 t^{2}-t+5$ feet, where t is time in seconds. Calulate the velocity and the acceleration at $t=2$ seconds. (Hint: First calculate the velocity and the acceleration at any instant.)

Good luck!

