date: the $16^{\text {th }}$ of October, 1998
place: room 221 Hayes
time: 8:30-9:20

111-Exam II

This exam contains 10 problems worth 10 points each. You may use only a blank sheet of paper, a pencil, a rubber gum, a ruler and a small calculator. You can use your calculator only to add, substract, multiply or divide two numbers. This exam is taken under the honor code.

Name:

Recommendation

Never give a "solitary" answer without justifying it by previous calculations or reasoning.

Problems

1. Calculate

$$
\lim _{x \rightarrow \infty} \frac{2 x^{3}-x^{2}+x-1}{x^{3}-x+1}
$$

Give a geometrical interpretation for this limit.
2. Calculate the first derivative of the function

$$
f(x)=\frac{x^{3}+1}{x^{2}+1}
$$

and bring it to the simplest form you can.
3. Calculate $f^{\prime}(2)$ where $f(x)=\left(x^{2}+x+1\right)^{2}$. (Hint: First, calculate $f^{\prime}(x)$.)
4. Calculate the second derivative of the function $f(t)=t^{3}-t^{2}+t-1$.
5. Calculate the limit

$$
\lim _{x \rightarrow-2} \frac{x^{2}+5 x+6}{2 x+4}
$$

6. Sketch the graph of a function $f(x)$ knowing that $f(1)=-1, f^{\prime}(1)=0, f^{\prime \prime}(1)=1$, $f(-2)=2, f^{\prime}(-2)=0, f^{\prime \prime}(-2)=-2, f(0)=0$. Specify a minimum point and a maximum point for this function.
7. Sketch as accurately as possible the graph of the function $f(x)=-x^{2}+2 x+3$. Clearly plot any x-intercept, y-intercept, and extreme point.
8. Show that the function $f(x)=x^{5}+x^{3}+x$ is increasing for all x. (Hint: Observe that $1, x^{2}$, and x^{4} are never negative quantities.)
9. Find the inflection point of the function $f(x)=\frac{x^{3}}{3}+\frac{5 x^{2}}{2}+6 x$ and state where the function is concave up and where concave down.
10. A rectangular box is made of three kinds of material. The top face costs $\$ 5$ per square foot, the bottom face $\$ 10$ per square foot, and each lateral face $\$ 6$ per square foot. Suppose that the bottom (top) face is a square and the volume of the box is 5 square feet. Is $\$ 44$ enough to construct such a box? Justify your answer. (Hint: First, find the minimum cost of the box.)

Good luck!

