date: the $17^{\text {th }}$ of December, 1998
place: room 221 Hayes
time: 8:00-10:00

111 - Final

This final contains 15 problems worth 10 points each. You may use only a blank sheet of paper, a pencil, a rubber gum, a ruler and a small calculator. You can use your calculator only to add, substract, multiply or divide two numbers. This final is taken under the honor code.

Name:

Recommendation

Never give a "solitary" answer without justifying it by previous calculations or reasoning.
$\ln .34=-1.0788$
$\ln 1.6=0.47$
$\ln 4=1.38$
$\ln 4.5=1.50$

Problems ${ }^{1}$

1. Find the equation and sketch the graph of the line through $(2,0)$, with slope 5 .
2. Compute $\frac{d}{d P}(\sqrt{1-3 P})$.
3. What is the slope of the graph of $f(x)=x^{3}-4 x^{2}+6$ at $x=2$? Write the equation of the tangent line to this curve at $x=2$.
4. A rectangular garden of area 75 square feet is to be surrounded on three sides by a brick wall costing $\$ 10$ per foot and on one side by a fence costing $\$ 5$ per foot. Find the dimensions of the garden such that the cost of materials is minimized.
5. Properties of a function h are described next. Draw some conclusions about the graph of the function.

$$
h(-3)=4, h^{\prime}(-3)=1, h^{\prime \prime}(-3)=0 .
$$

6. Sketch the parabola $y=-2 x^{2}+10 x-10$. Include its x - and y-intercepts.
7. Sketch the curve $y=x^{3}-3 x^{2}-9 x+7$.
8. Differentiate the function $(4 x-1)(3 x+1)^{4}$.
9. Find $\frac{d y}{d x}$ where y is a function of u such that $\frac{d y}{d u}=\frac{u}{u^{2}+1}$ and $u=\frac{5}{x}$.
10. Differentiate $y=e^{-2 x}-2 x$.
11. Differentiate the function $\ln \left(\frac{x}{x-3}\right)$.
12. The size of a certain insect population is given by $P(t)=300 e^{.01 t}$, where t is measured in days. At what time will the population equal 1200 ?
13. Sandals woven from strands of tree bark were found recently in Fort Rock Creek Cave in Oregon. The bark contained 34% of the level of ${ }^{14} C$ found in living bark. Approximately how old are the sandals? (Recall that the decay constant for ${ }^{14} C$ is .00012.)
14. A parcel of land bought in 1985 for $\$ 10,000$ was worth $\$ 16,000$ in 1990 . If the land continues to appreciate at this rate, in what year will it be worth $\$ 45,000$?
15. Determine $\int\left(x^{2}-x-1\right) d x$.

Good luck!

[^0]
[^0]: ${ }^{1}$ For some useful numerical values of \ln see the front page

