Solutions to Exam. I

1. It is not a Friday in June.

2. It is niether Friday nor June.

3. Letting P and Q be as before, and taking the translations from 1 and 2, $\neg(P\&Q)$ would be true on a Friday in February, while $(\neg P\&\neg Q)$ would not. Assuming Soundness, it follows that $\neg(P\&Q) \not\models (\neg P\&\neg Q)$.

4. The definition of wff says (1) a propositional variable is a wff, (2) if F is a wff, so is $\neg F$, (3) if F and G are wff's, so are (F & G), (F v G), and (F \rightarrow G), and (4) nothing is a wff unless it can be obtained by finitely many applications of (1), (2), (3). The sequence below witnesses the fact that \neg (P v Q) is a wff:

1.	P. application of (1) 3.	(P v O).	application	of (3) to 1	and 2
	r, appineation or (-,	$(- \cdot x),$	appine and a	- (-	,	

2. Q, application of (1) 4. \neg (P v Q), application of (2) to 3

5.	1 2 1,2 1	1. P 2. Q 3. (P & Q) 4. (Q \rightarrow (P & 5. (P \rightarrow (Q \rightarrow	Q)) • (P &	Q)))	1,2 2,3 1,4	A A &I CP CP	
6.	1 1	1. P 2. $\neg \neg P$ 3. $(P \rightarrow \neg \neg P)$	1 1,2	DN CP	А		
7.	1 2 3 2,3 1,2,3	1. $(P \rightarrow Q)$ 2. $(Q \rightarrow R)$ 3. $\neg R$ 4. $\neg Q$ 5. $\neg Q$	2,3 1,4	A A MTT MTT			
8.	1 2 3 2,3 5 1,2	1. $(P \lor Q)$ 2. $(P \rightarrow Q)$ 3. P 4. Q 5. Q 6. Q	3,2 1,3,4,	5,5	A A MPP A vE		
9.	2 1,2 1	 3. (Decorations on the left indicate assumptions being used.) 4. 5. 					
10.	 5. 2,3 (Decorations on the right indicate earlier lines to whic 6. 4,5 rule is being applied.) 7. 6 					icate earlier lines to which	

9. 1,3,7,8,,8 10. 2,9