Solutions to Exam. I

1. It is not a Friday in June.
2. It is niether Friday nor June.
3. Letting P and Q be as before, and taking the translations from 1 and $2, \neg(\mathrm{P} \& \mathrm{Q})$ would be true on a Friday in February, while ($\neg \mathrm{P} \& \neg \mathrm{Q})$ would not. Assuming Soundness, it follows that $\neg(\mathrm{P} \& \mathrm{Q})$ If $(\neg \mathrm{P} \& \neg \mathrm{Q})$.
4. The definition of wff says (1) a propositional variable is a wff, (2) if F is a wff, so is $\neg F$, (3) if F and G are wff's, so are ($F \& G$), ($F \vee G$), and $(F \rightarrow G)$, and (4) nothing is a wff unless it can be obtained by finitely many applications of (1), (2), (3). The sequence below witnesses the fact that $\neg(P \vee Q)$ is a wff:
5. P , application of (1) 3. $(\mathrm{P} \vee \mathrm{Q})$, application of (3) to 1 and 2
6. Q , application of $(1) \quad$ 4. $\neg(\mathrm{P} \vee \mathrm{Q})$, application of (2) to 3
7. 1 1. P

2 2. Q
1,2 3. ($\mathrm{P} \& \mathrm{Q}$)
1 4. $(\mathrm{Q} \rightarrow(\mathrm{P} \& \mathrm{Q}))$
5. $(\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow(\mathrm{P} \& \mathrm{Q}))) \quad 1,4 \quad \mathrm{CP}$
6. 1 1. P

A
1 2. $\neg \rightarrow \mathrm{P} \quad 1 \quad \mathrm{DN}$
3. $(\mathrm{P} \rightarrow \neg \neg \mathrm{P}) 1,2 \quad \mathrm{CP}$
7. 1 1. $(\mathrm{P} \rightarrow \mathrm{Q}) \quad \mathrm{A}$

2 2. $(\mathrm{Q} \rightarrow \mathrm{R})$ A
3 3. $\neg \mathrm{R} \quad \mathrm{A}$
2,3 4. $\neg \mathrm{Q} \quad 2,3 \quad$ MTT
$1,2,3 \quad$ 5. $\neg \mathrm{Q} \quad 1,4 \quad$ MTT
8. 1 1. $(\mathrm{P} \vee \mathrm{Q})$ A

2 2. $(\mathrm{P} \rightarrow \mathrm{Q})$
3 3. P
2,3 4. Q
3,2

5 5. Q
1,2 6. Q
1,3,4,5,5
A
A
MPP
A
vE
9. 2 3. (Decorations on the left indicate assumptions being used.)

1,2 4.
15.
10. 5. 2,3 (Decorations on the right indicate earlier lines to which
6. 4,5 rule is being applied.)
7. 6
9. $1,3,7,8,, 8$
10. 2,9

