Brief Article

The Author

November 3, 2004

Math 119: Calculus
Name:
Exam II
Tutorial
Instructor: \qquad November 1, 1994
Section: \qquad

Calculators are not allowed. Hand in this answer page only. Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 19 multiple choice questions, worth 5 points each. An additional 5 points will be given for your correct tutorial section number.

You are taking this exam under the honor code.

Find $\frac{d}{d x}\left(\frac{\sin x+1}{\cos x+1}\right) \quad$ (Hint: remember that $\sin ^{2} x+\cos ^{2} x=1$.) $\frac{1+\sin x+\cos x}{(\cos x+1)^{2}} \sec ^{2}(x+1)$ $\sec ^{2} x \frac{1}{(\cos x+1)^{2}} 0$

Find the slope of the tangent line to the curve $y=\cos 3 x$ at the point $\left(\frac{\pi}{4},-\frac{\sqrt{2}}{2}\right) .-\frac{3 \sqrt{2}}{2} \frac{3 \sqrt{2}}{2}$ $-33-\frac{1}{2}$

Find $f^{\prime}(x)$ if $f(x)=(1+2 x)^{3}$. $f^{\prime}(x)=6(1+2 x)^{2} f^{\prime}(x)=12(1+2 x)^{2} f^{\prime}(x)=24(1+2 x)^{2}$ $f^{\prime}(x)=3(1+2 x)^{2} f^{\prime}(x)=(1+2 x)^{2}$

Find $\frac{d y}{d x}$ by implicit differentiation:

$$
\begin{gathered}
x^{2}+x y^{2}+y^{3}=1 \\
\frac{d y}{d x}=\frac{-2 x-y^{2}}{2 x y+3 y^{2}} \frac{d y}{d x}=\frac{1-2 x-y^{2}}{2 x y+3 y^{2}} \frac{d y}{d x}=\frac{-2 x-y^{2}-2 x y}{3 y^{2}} \frac{d y}{d x}=\frac{-2 x-2 x y}{3 y^{2}} \frac{d y}{d x}=\frac{1-2 x-2 x y}{3 y^{2}}
\end{gathered}
$$

Find the slope of the tangent line to the following curve at the given point:

$$
x^{2}-y^{2}=3, \quad(2,1)
$$

$2 \frac{1}{2}-\frac{1}{2}-2 \frac{3}{2}$
Find the second derivative of the function $f(x)=\tan x .2 \sec ^{2} x \tan x 2 \sec x-2 \sec x \tan x-2 \sec x$ $2 \sec x \tan x$

A particle moves along a straight line, with equation of motion given by $s=t^{3}-12 t$, with $t \geq 0$. Find the acceleration at the instant when the velocity is $0.12-1224 \sqrt{12} 0$

A square with side x and area A is growing with respect to time t in such a way that x grows at a rate of 3 feet per second. Find $\frac{d A}{d t}$ at the moment when $x=4.249 \frac{16}{9} 1612$

If $x y=1$ and $\frac{d x}{d t}=4$, find $\frac{d y}{d t}$ when $x=2 .-1-\frac{1}{2} \frac{1}{4}-4 \frac{1}{2}$
Find (all) the critical numbers of the function $f(x)=|x-1| . \quad x=1 x=-1 x=0 x=1$ and $x=-1$ The function has no critical numbers

Find the absolute maximum value (i.e. the y-coordinate) of the function $f(x)=-x^{2}+4 x+1$ on the interval $0 \leq x \leq 3.524103$

Find (all of) the critical numbers of the function $f(x)=\sin 2 x$ on the interval $0<x<\pi$. $x=\frac{\pi}{4}, \frac{3 \pi}{4}$ $x=\frac{\pi}{2} x=\frac{\pi}{4} x=\frac{\pi}{2}$ The function has no critical numbers on the given interval

Joe and Robin start from the same point, at the same time. Joe walks east at a rate of 4 mph and Robin walks north at a rate of 3 mph . How quickly is the distance between them changing after one hour? 5 mph 10 mph 7 mph 12 mph 15 mph

If $g(t)=t^{4}-4 t^{2}+2$, find $g^{(3)}(1)$. (Remember that $f^{(n)}(x)$ is the n-th derivative of $f(x)$.) 2404 $-4-1$

Consider the curve $x^{2}+2 y^{2}=8$. It is a fact that $\frac{d y}{d x}=-\frac{1}{2} \cdot \frac{x}{y}$. Using this fact, find all the points where the tangent line is horizontal. $(0,2)$ and $(0,-2)(0,2)(\sqrt{8}, 0)$ and $(-\sqrt{8}, 0)(0,0)(\sqrt{8}, 0)$

Find a second degree polynomial $P(x)$ such that $P(0)=1, P^{\prime}(0)=3$ and $P^{\prime \prime}(0)=4$. (In other words, if $P(x)=a x^{2}+b x+c$, this question is asking you to figure out what a, b and c have to be.) $P(x)=2 x^{2}+3 x+1 P(x)=4 x^{2}+3 x+1 P(x)=x^{2}+3 x+2 P(x)=x^{2}+3 x+4 P(x)=x^{2}+2 x+3$

If $f(x)=\tan \frac{1}{x}$, find $f^{\prime}(x) .-\left(\frac{1}{x^{2}}\right)\left(\sec ^{2} \frac{1}{x}\right)(\tan x)\left(-\frac{1}{x^{2}}\right)+\left(\frac{1}{x}\right)\left(\sec ^{2} x\right)\left(\frac{1}{x^{2}}\right)\left(\csc ^{2} \frac{1}{x}\right)$ $\left(\frac{1}{x^{2}}\right)\left(\sec ^{2} \frac{1}{x}\right)-\left(\frac{1}{x^{2}}\right)\left(\csc ^{2} \frac{1}{x}\right)$

Let $f(x)=8 x^{\frac{1}{2}}-\frac{2}{3} x^{\frac{3}{2}}+1$. It is a fact that $f^{\prime}(x)=\frac{4}{\sqrt{x}}-\sqrt{x}$. Find (all of) the critical numbers
of $f(x) . x=0$ and $x=4 x=4 x=0$ and $x=2 x=0, x=2$ and $x=-2 x=0$ and $x=16$
Let $f(x)=x \sin x$. Find $f^{\prime}(\pi) .-\pi 0 \pi-11$

