Brief Article

The Author

November 3, 2004

Math 119: Calculus
Name: \qquad Exam III
Tutorial
Instructor: \qquad December 6, 1994 Tutorial

Section:

Calculators are not allowed. Hand in this answer page only. Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 19 multiple choice questions, worth 5 points each. An additional 5 points will be given for your correct tutorial section number.

You are taking this exam under the honor code.

Let $f(x)=\frac{\cos ^{2} x}{\sin x}$. Which of the following statements is true about the limits as $x \rightarrow \pi$ from the left and from the right?
$\lim _{x \rightarrow \pi-} f(x)=+\infty, \lim _{x \rightarrow \pi+} f(x)=-\infty . \lim _{x \rightarrow \pi-} f(x)=+\infty, \lim _{x \rightarrow \pi+} f(x)=+\infty . \lim _{x \rightarrow \pi-} f(x)=-\infty$, $\lim _{x \rightarrow \pi+} f(x)=-\infty . \lim _{x \rightarrow \pi-} f(x)=-\infty, \lim _{x \rightarrow \pi+} f(x)=+\infty . \lim _{x \rightarrow \pi-} f(x)=1, \lim _{x \rightarrow \pi+} f(x)=-1$.

Let

$$
f(x)= \begin{cases}x^{2}+1, & \text { if } 0 \leq x \leq 1 \\ 2 x, & \text { if } 1 \leq x \leq 2\end{cases}
$$

Find $A_{0}^{x}(f)$ for x satisfying $1 \leq x \leq 2 . A_{0}^{x}(f)=x^{2}+\frac{1}{3} A_{0}^{x}(f)=x^{2} A_{0}^{x}(f)=x^{2}+\frac{4}{3} A_{0}^{x}(f)=\frac{1}{3} x^{3}+x$ $A_{0}^{x}(f)=\frac{1}{3} x^{3}+x+\frac{4}{3}$

Consider the function

$$
f(x)=6 x^{2}+1
$$

Find the area under the graph of $f(x)$ between $x=-1$ and $x=2.211815936$
Consider the function

$$
f(x)=x+1
$$

Find $\mathbf{U}_{0}^{4}(P, f)$ (the upper sum) if P partitions the interval $[0,4]$ into four equal segments. 14106 1812

Let $f(x)$ be a function such that $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$ exist for all x, and such that $f^{\prime \prime}(x)=\frac{x^{2}-4}{\sqrt{x^{4}+1}}$. You don't have to figure out what $f(x)$ is. But which of the following is true about the graph of $f(x)$ at $x=2$? It must have an inflection point at $x=2$. It must have a local maximum at $x=2$. It must have a local minimum at $x=2$. At $x=2$ it may have a local minimum or maximum, but it cannot have an inflection point. From the given information it is impossible to tell if it has a local maximum, local minimum or inflection point at $x=2$.

Let $f(x)=\frac{1}{x}+\frac{1}{4} x+2$. Note that $f^{\prime}(x)=\frac{-1}{x^{2}}+\frac{1}{4}$ and $f^{\prime \prime}(x)=\frac{2}{x^{3}}$. On what interval(s) is $f(x)$ decreasing? $-2 \leq x<0$ and $0<x \leq 2-\infty<x \leq-2$ and $2 \leq x<\infty$ $-\infty<x \leq-2$ and $0<x \leq 2-2 \leq x<0$ and $2 \leq x<\infty-\infty<x<0$

Suppose $f(x)=1+x^{2}$ for $-3 \leq x \leq 2$. Take the partition P that divides the interval $[-3,2]$ into five equal segments, as shown in the diagram below. (Note that the diagram is not drawn perfectly to scale.) Find the lower sum $\mathbf{L}_{-3}^{2}(P, f)$.

11246199
Let $g(x)=\frac{\sqrt{x^{2}+9}}{2 x+7}$. Find the horizontal asymptote(s) of $g(x)$, if there are any. $y=-\frac{1}{2}$ and $y=\frac{1}{2}$ Only $y=0$ Only $y=\frac{1}{2} g(x)$ has no horizontal asymptotes Only $y=\frac{3}{7}$

A ball is thrown upward with a velocity of $16 \mathrm{ft} / \mathrm{sec}$ from a height of 32 ft . After how many seconds does it hit the ground? (Remember that the acceleration due to gravity is $-32 \mathrm{ft} / \mathrm{sec}^{2}$.) 2 seconds $\frac{1}{2}$ second 1 second 4 seconds 3 seconds

Let $f(x)=\sin \left(x^{2}\right)$. Which of the following statements is true about $f(x)$? (Only one of the statements is true.) $f(x)$ is symmetric about the y-axis. $f(x)$ is symmetric about the origin. $f(x)$ is periodic with period $4 \pi^{2} . f(x) \geq 0$ for all $x . \lim _{x \rightarrow \infty} f(x)=0$.

Let $g(x)=\frac{x-1}{x+1}$. Find all the asymptotes of $g(x)$. vertical asymptote $x=-1$; horizontal asymptote $y=1$ vertical asymptote $x=-1$; horizontal asymptote $y=-1$ vertical asymptote $x=1$; horizontal asymptote $y=1$ vertical asymptote $x=1$; horizontal asymptote $y=-1$ vertical asymptotes $x=-1$ and $x=1$; horizontal asymptote $y=1$

Let $g(x)=x^{4}-8 x^{2}$. Note that

$$
\begin{array}{r}
g^{\prime}(x)=4 x\left(x^{2}-4\right) \\
g^{\prime \prime}(x)=4\left(3 x^{2}-4\right)
\end{array}
$$

At which x, if any, does $g(x)$ have a local maximum? Only at $x=0 . g(x)$ has no local maximum. At $x=-2$ and $x=2$. At $x=-2, x=0$ and $x=2$. At $x=-\frac{2}{\sqrt{3}}$ and $x=\frac{2}{\sqrt{3}}$

Let $h(x)=x-3 x^{1 / 3}$. Note that

$$
\begin{gathered}
h^{\prime}(x)=1-x^{-2 / 3} \\
h^{\prime \prime}(x)=\frac{2}{3} x^{-5 / 3}
\end{gathered}
$$

On which interval(s) is $h(x)$ concave up? $0<x<+\infty-\infty<x<0-\infty<x<0$ and $0<x<+\infty$ $-1<x<0$ and $0<x<1-\infty<x<-1$ and $1<x<+\infty$

Find the point on the line $y=3 x+2$ that is closest to the point $(5,7) .(2,8)\left(\frac{5}{2}, \frac{19}{2}\right)(0,2)(1,5)$ $(3,11)$

A box with a square base and open top must have a volume of $4 \mathrm{ft}^{3}$. Find the length x of one side of the base the box if you are to minimize the amount of material used to construct it. (Note you're finding x, not y.)
$x=2 x=1 x=4 x=\frac{1}{2} x=\sqrt[3]{4}$
Find an antiderivative of $f(x)=\sin x+\sqrt{x} . \quad-\cos x+\frac{2}{3} x^{3 / 2} \cos x+\frac{2}{3} x^{3 / 2}-\cos x-\frac{1}{2} x^{-1 / 2}$ $\cos x-\frac{1}{2} x^{-1 / 2}-\cos x-\frac{2}{3} x^{3 / 2}$

Let $f(x)=x^{4}-4 x^{3}$. Notice that

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{2}(x-3) \\
f^{\prime \prime}(x) & =12 x(x-2)
\end{aligned}
$$

Which of the following describes the graph of $f(x)$? local minimum at $x=3$; inflection points at $x=0$ and $x=2$ local minimum at $x=0$ and $x=3$; inflection point at $x=2$ local maximum at $x=0$; local minimum at $x=2$; no inflection points local maximum at $x=0$; local minimum at $x=2$; inflection point at $x=3$ local maximum at $x=0$; local minimum at $x=3$; inflection points at $x=0$ and $x=2$

A particle is moving along a straight line with position function $s(t)$. (Length is measured in feet and time is in seconds.) Its acceleration function is given by $a(t)=4-6 t$. You are also given that its initial velocity is $v(0)=5$ and its initial position is $s(0)=7$. Find the position after 1 second (i.e. find $s(1)$). 13 feet 6 feet 1 foot -2 feet 5 feet

Let $g(x)=12-3 x^{2}$. Find the area of the portion of the graph of $g(x)$ which is above the x-axis. (Hint: you'll have to figure out where the graph crosses the x-axis.)

