Brief Article

The Author

November 3, 2004

Name:_

Math 119: Calculus

_Exam I

Tutorial

Instructor:	September 26, 1995	Tutorial
Section:	_	
Calculators are not allowed. Hand in this choice problems by placing an × through are 19 multiple choice questions, worth 5 percorrect tutorial section number.	one letter for each problem on this	answer sheet. There
You are taking this exam under the l	nonor code.	
Let L be the line through the points $(2,3)$ dicular to L and whose y -intercept is 7.	and $(4,6)$. Find the equation of the	e line that is perpen-
2x + 3y = 21		
-2x + 3y = 21		
2x - 3y = 21		
3x - 2y = 14		
2x + 3y = 13		
Find $\sin(\frac{-7\pi}{6})$.		
$\frac{1}{2}$		
$-\frac{1}{2}$		
$\frac{\sqrt{3}}{2}$		

$$-\frac{\sqrt{3}}{2}$$

$$-\frac{\sqrt{2}}{2}$$

Find the domain of the function

$$f(x) = \sqrt{\frac{x}{x-1}}$$

(Recall that $A \cup B$ means all x which are either in A or in B or both.)

$$(-\infty,0] \cup (1,+\infty) \ (-\infty,0) \cup (1,+\infty) \ (0,1) \ [0,1) \ all \ x \neq 1$$

The following equation is that of a circle. Find its center and radius.

$$x^2 + y^2 - 6x + 2y + 6 = 0$$

center (3,-1), radius 2 center (-3,1), radius 2 center (-3,1), radius 4 center (3,-1), radius 4 center (3,1), radius 2

If a ball is thrown into the air with a velocity of 64 ft/sec, its height in feet after t seconds is given by $y = 64t - 16t^2$. Find the average velocity of the ball for the first second of flight (i.e. from t = 0 to t = 1).

48 ft/sec 32 ft/sec 64 ft/sec 16 ft/sec 0 ft/sec

Let

$$f(x) = \begin{cases} x^2 + 1 & \text{if } x < 1; \\ 6 & \text{if } x = 1; \\ 3x - 1 & \text{if } x > 1. \end{cases}$$

Find $\lim_{x\to 1} f(x)$, if it exists.

2 does not exist 5 6 1

Find $\lim_{x\to 1} \frac{x^2-1}{x-1}$, if it exists.

 $2\ 0\ 1$ does not exist -2

Find $\lim_{x\to 0^-} \frac{|x|}{x}$, if it exists.

-1 1 0 does not exist π

Let f(x) be a function. Consider the following four limits:

I.
$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$$
 II. $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ III. $f'(a)$ IV. $\lim_{h\to 0} \frac{f(h)-f(a)}{a}$

Which of these limits represent(s) the slope of the tangent line to the graph of y = f(x) at the point (a, f(a))?

only I., II. and III. they all do only I. and III. only III. only I. and II.

Recall our notation that "|AB|" is the length of the straight line segment joining A to B, and "arc AB" is the length of the arc joining A to B. In the following diagram, the radius of the circle is 1 (i.e. |OA| = |OB| = 1) and the line segment BD is tangent to the circle.

Which of the following is equal to $\tan \theta$?

$$|BD|$$
 arc AB $|AB|$ $|AC|$ $|OC|$

Find
$$\lim_{x\to 0} \frac{\sin 3x}{\sin 4x}$$
.

$$\frac{3}{4} \frac{4}{3}$$
1 does not exist 0

Find
$$\lim_{x\to 0} \frac{x^2}{\sin 5x}$$
. (Hint: $x^2 = x \cdot x$.)

$$0\ \frac{1}{5}\ 1\ \mathrm{does\ not\ exist}\ \frac{2}{5}$$

Find the derivative of $f(x) = \frac{x^2 + 1}{x^2 - 1}$

$$\frac{-4x}{(x^2-1)^2} \frac{-4x^3}{(x^2-1)^2} \frac{4x^3-4x}{(x^2-1)^2} \frac{4x}{(x^2-1)^2} \frac{4x^3}{(x^2-1)^2}$$

Find the derivative of $f(x) = \frac{1}{\sqrt{x}}$

$$\frac{-1}{2\sqrt{x^3}} \frac{1}{2\sqrt{x^3}} \frac{-2}{\sqrt{x^3}} \frac{2}{\sqrt{x^3}} \frac{2}{\sqrt{x}}$$

Consider the following equations and inequalities:

I.
$$\frac{\sin \theta}{\theta} = 1$$

II.
$$\sin^2 \theta + \cos^2 \theta = 1$$
 III. $-1 \le \tan \theta \le 1$

III.
$$-1 \le \tan \theta \le 1$$

Which of them is/are true for all values of θ ?

Only II. I., II. and III. II. and III. I. and III. I. and III.

Let

$$f(x) = \begin{cases} 3 & \text{if } x \le -1; \\ x & \text{if } -1 < x < 1; \\ \frac{1}{\sqrt{x}} & \text{if } x \ge 1. \end{cases}$$

Find all values of x at which f(x) is not continuous.

$$x = -1$$
 $x = -1$ and $x = 1$ $x = -1$ and $x = 0$ $x = -1$, $x = 0$ and $x = 1$ $x = 1$

The following limit represents the derivative of some function f(x) at some number a:

$$\lim_{h\to 0}\frac{\sqrt{4+h}-2}{h}$$

Find f and a.

$$f(x) = \sqrt{x}, \ a = 4 \ f(x) = \sqrt{4+x}, \ a = 4 \ f(x) = \sqrt{x}, \ a = 2 \ f(x) = \sqrt{4+x}, \ a = 2 \ f(x) = \sqrt{x}, \ a = 0$$

What is the distance between the points (-1, -2) and (3, 4)?

$$\sqrt{52} \,\, \frac{6}{4} \,\, \sqrt{8} \,\, 52 \,\, \sqrt{10}$$

Find the equation of the tangent line to the curve $y = x^3 - 5$ at the point (2,3).

$$y-3=12(x-2)$$
 $y-3=11(x-2)$ $y-2=12(x-3)$ $y-2=11(x-3)$ $y-3=27(x-2)$