Brief Article

The Author

November 3, 2004

Math 119: Calculus
Name:
Exam I
Tutorial
Instructor: \qquad September 26, 1995 Tutorial

Section:

Calculators are not allowed. Hand in this answer page only. Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 19 multiple choice questions, worth 5 points each. An additional 5 points will be given for your correct tutorial section number.

You are taking this exam under the honor code.

Let L be the line through the points $(2,3)$ and $(4,6)$. Find the equation of the line that is perpendicular to L and whose y-intercept is 7 .
$2 x+3 y=21$
$-2 x+3 y=21$
$2 x-3 y=21$
$3 x-2 y=14$
$2 x+3 y=13$
Find $\sin \left(\frac{-7 \pi}{6}\right)$.
$\frac{1}{2}$
$-\frac{1}{2}$
$\frac{\sqrt{3}}{2}$
$-\frac{\sqrt{3}}{2}$
$-\frac{\sqrt{2}}{2}$
Find the domain of the function

$$
f(x)=\sqrt{\frac{x}{x-1}}
$$

(Recall that $A \cup B$ means all x which are either in A or in B or both.)

$$
(-\infty, 0] \cup(1,+\infty)(-\infty, 0) \cup(1,+\infty)(0,1)[0,1) \text { all } x \neq 1
$$

The following equation is that of a circle. Find its center and radius.

$$
x^{2}+y^{2}-6 x+2 y+6=0
$$

center $(3,-1)$, radius 2 center $(-3,1)$, radius 2 center $(-3,1)$, radius 4 center ($3,-1$), radius 4 center (3,1), radius 2

If a ball is thrown into the air with a velocity of $64 \mathrm{ft} / \mathrm{sec}$, its height in feet after t seconds is given by $y=64 t-16 t^{2}$. Find the average velocity of the ball for the first second of flight (i.e. from $t=0$ to $t=1$).
$48 \mathrm{ft} / \mathrm{sec} 32 \mathrm{ft} / \sec 64 \mathrm{ft} / \mathrm{sec} 16 \mathrm{ft} / \mathrm{sec} 0 \mathrm{ft} / \mathrm{sec}$
Let

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x<1 \\ 6 & \text { if } x=1 \\ 3 x-1 & \text { if } x>1\end{cases}
$$

Find $\lim _{x \rightarrow 1} f(x)$, if it exists.
2 does not exist 561
Find $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$, if it exists.
201 does not exist -2
Find $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}$, if it exists.
-1 10 does not exist π
Let $f(x)$ be a function. Consider the following four limits:
I. $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
II. $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
III. $f^{\prime}(a)$
IV. $\lim _{h \rightarrow 0} \frac{f(h)-f(a)}{a}$

Which of these limits represent(s) the slope of the tangent line to the graph of $y=f(x)$ at the point ($a, f(a)$)?
only I., II. and III. they all do only I. and III. only III. only I. and II.
Recall our notation that " $|A B|$ " is the length of the straight line segment joining A to B, and "arc $A B "$ is the length of the arc joining A to B. In the following diagram, the radius of the circle is 1 (i.e. $|O A|=|O B|=1$) and the line segment $B D$ is tangent to the circle.

Which of the following is equal to $\tan \theta$?
$|B D| \operatorname{arc} A B|A B||A C||O C|$
Find $\lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 4 x}$.
$\frac{3}{4} \frac{4}{3} 1$ does not exist 0
Find $\lim _{x \rightarrow 0} \frac{x^{2}}{\sin 5 x} .\left(\right.$ Hint: $x^{2}=x \cdot x$.)
$0 \frac{1}{5} 1$ does not exist $\frac{2}{5}$
Find the derivative of $f(x)=\frac{x^{2}+1}{x^{2}-1}$
$\frac{-4 x}{\left(x^{2}-1\right)^{2}} \frac{-4 x^{3}}{\left(x^{2}-1\right)^{2}} \frac{4 x^{3}-4 x}{\left(x^{2}-1\right)^{2}} \frac{4 x}{\left(x^{2}-1\right)^{2}} \frac{4 x^{3}}{\left(x^{2}-1\right)^{2}}$
Find the derivative of $f(x)=\frac{1}{\sqrt{x}}$
$\frac{-1}{2 \sqrt{x^{3}}} \frac{1}{2 \sqrt{x^{3}}} \frac{-2}{\sqrt{x^{3}}} \frac{2}{\sqrt{x^{3}}} \frac{2}{\sqrt{x}}$
Consider the following equations and inequalities:
I. $\frac{\sin \theta}{\theta}=1$
II. $\sin ^{2} \theta+\cos ^{2} \theta=1$
III. $-1 \leq \tan \theta \leq 1$

Which of them is/are true for all values of θ ?
Only II. I., II. and III. II. and III. I. and II. I. and III.
Let

$$
f(x)= \begin{cases}3 & \text { if } x \leq-1 \\ x & \text { if }-1<x<1 \\ \frac{1}{\sqrt{x}} & \text { if } x \geq 1\end{cases}
$$

Find all values of x at which $f(x)$ is not continuous.
$x=-1 x=-1$ and $x=1 x=-1$ and $x=0 x=-1, x=0$ and $x=1 x=1$

The following limit represents the derivative of some function $f(x)$ at some number a :

$$
\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}
$$

Find f and a.
$f(x)=\sqrt{x}, a=4 f(x)=\sqrt{4+x}, a=4 f(x)=\sqrt{x}, a=2 f(x)=\sqrt{4+x}, a=2 f(x)=\sqrt{x}, a=0$
What is the distance between the points $(-1,-2)$ and $(3,4)$?
$\sqrt{52} \frac{6}{4} \sqrt{8} 52 \sqrt{10}$
Find the equation of the tangent line to the curve $y=x^{3}-5$ at the point $(2,3)$.
$y-3=12(x-2) y-3=11(x-2) y-2=12(x-3) y-2=11(x-3) y-3=27(x-2)$

