Brief Article The Author November 3, 2004 | Math 119: Calculus | Name: | | Exam II | Tutorial | |--------------------|-------|------------------|---------|----------| | Instructor: | | October 31, 1995 | | Tutorial | | Section: | | | | | Calculators are not allowed. Hand in this answer page only. Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 19 multiple choice questions, worth 5 points each. An additional 5 points will be given for your correct tutorial section number. ## You are taking this exam under the honor code. let $f(x) = \sin x + \cos x$. Find all values of x between 0 and 2π , inclusive, where the tangent line to the graph of f(x) is horizontal. $x = \frac{\pi}{4}, \frac{5\pi}{4}$ $x = \frac{3\pi}{4}, \frac{7\pi}{4}$ $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$ $x = 0, \pi, 2\pi$ $x = \frac{\pi}{2}, \frac{3\pi}{2}$ Let $$f(x) = \tan(x^2 + 1)$$. Find $f'(x)$. $2x \sec^2(x^2 + 1) \sec^2(x^2 + 1) \sec^2(2x) \tan(2x) \cdot \sec^2(x^2 + 1) \sec^2(x^2 + 1) + \tan(2x)$ If $$xy + 1 = y^2$$, use implicit differentiation to find $\frac{dy}{dx}$. $\frac{-y}{x-2y} \frac{x+y}{2y} = 0$ $\frac{y}{x} \frac{-y-1}{x-2y}$ Let $f(x) = \sin x$. Find the one hundredth derivative $f^{(100)}(x)$. $\sin x \cos x - \sin x - \cos x$ (100!) $\sin x$ Let $$f(x) = x^{10} + x^5 + 3$$. Find $f^{(10)}(x)$. 10! 10! + 5! 10! + 5! + 3! 0 10! + 5! + 3 If a ball is thrown vertically upward with a velocity of 16 ft/sec, then its height after t seconds is $s = 16t - 16t^2$. What is the maximum height reached by the ball? 4 ft. 0 ft. 16 ft. 8 ft. 32 ft. The equation of motion for a certain particle is $s = t^4 - t^2 + 1$. What is the equation for the acceleration of the particle? $12t^2 - 2$ $12t^2$ $4t^3 - 2t$ 24t $4t^3 - 2t + 1$ Dave is standing at the edge of a canal directly across from point A. The canal is 8 feet across. Mary is walking along the canal, away from point A, at a rate of 5 ft/sec. When she is 6 ft away from point A, at what rate is the distance between Dave and Mary increasing? 3 ft/sec 4 ft/sec 2 ft/sec 1 ft/sec 5 ft/sec A spherical snowball is melting in such a way that its volume is decreasing at a rate of $4 \text{ cm}^3/\text{min}$. Recall that the formula for the volume of a sphere is $$V = \frac{4}{3}\pi r^3$$ where V is the volume and r is the radius of the sphere. Find $\frac{dr}{dt}$ at the moment when r=5 cm. (Hint: don't forget that the snowball is getting smaller.) $\frac{-1}{25\pi}$ $\frac{1}{25\pi}$ $\frac{3}{125\pi}$ $\frac{-3}{125\pi}$ $\frac{-1}{125\pi}$ Let $f(x) = x^3 - 12x$. Find the absolute maximum value of f(x) on the interval [0,3]. (You are looking for a y-value, not an x-value.) 0-9-16 16 2 Let $$f(x) = \frac{x}{x^2 + 1}$$ Find (all) the critical numbers of f(x), if there are any. x = -1, 1 x = 1 x = -1 there are no critical numbers x = 0 Let $f(x) = 5x^{2/3} + x^{5/3}$. It happens to be true that $$f'(x) = \frac{10 + 5x}{3x^{1/3}}$$ Find the value(s) of x, if any, where f(x) has a local minimum x=0 x=-2,0. x=-2 x=2 f(x) has no local minimum Let $f(x) = x^4 - 6x^2$. Find the interval(s) where f(x) is concave up. $(-\infty, -1) \cup (1, \infty)$ (-1, 1) $(-\infty, 1)$ f(x) is concave up everywhere f(x) is not concave up anywhere Consider the curve $x=y^2$. Find the slope of the tangent line at the point (4,2). $\frac{1}{4}$ 4 $\frac{1}{8}$ 8 $\frac{1}{2}$ Let $$f(x) = \frac{1}{4}x^4 - \frac{1}{3}x^3 + 5.$$ Find all the local extrema of f(x). local minimum at x = 1 local maximum at x = 0, local minimum at x = 1 local minimum at x = 0, local maximum at x = 1 there are no local extrema local minimum at x = 0, local minimum at x = 1 Let $f(x) = \frac{1}{2}x^2 + \sin x$. Find the inflection points, if any, of f(x) in the range $0 \le x \le 2\pi$. there are no inflection points $x = \frac{\pi}{2}, \frac{3\pi}{2}$ $x = \frac{\pi}{2}, \pi, \frac{3\pi}{2}$ $x = \frac{3\pi}{2}$ Let $$f(x) = \sqrt[3]{x^4 - x}$$. Find $f'(x)$. $\frac{4x^3 - 1}{3(x^4 - x)^{2/3}} \frac{1}{3(x^4 - x)^{2/3}} \frac{3(4x^3 - 1)}{(x^4 - x)^{2/3}} \frac{(x^4 - x)^{2/3}}{4x^3 - 1} \frac{4(x^3 - 1)}{3(x^4 - x)^{2/3}}$ Consider the curve $4x^2 + y^2 = 4$. It is a fact that $$\frac{dy}{dx} = -4 \cdot \frac{x}{y}$$ Using this fact, find all the points on the curve where the tangent line is horizontal. (0,2) and (0,-2) (1,0) and (-1,0) (0,2) (1,0) (0,0) An inverted conical tank has radius 4 meters and height 10 meters. It is being filled with water at a rate of 8 m³/min. How quickly is the water rising when the tank is half full (i.e. when the height of the water reaches 5 meters)? Recall that the formula for the volume of a cone of radius r and height h is $V = \frac{1}{3}\pi r^2 h$. $$\frac{2}{\pi} \frac{4}{\pi} \frac{\pi}{3} \frac{\pi}{10} 6\pi$$