# Brief Article 

The Author

November 3, 2004

Instructor: $\qquad$ October 29, 1996

Time of MWF
class: $\qquad$

Calculators are not allowed. Hand in this answer page only. Record your answers to the multiple choice problems by placing an $\times$ through one letter for each problem on this answer sheet. There are 20 multiple choice questions, worth 5 points each.

## You are taking this exam under the honor code.

Let

$$
f(x)= \begin{cases}x^{2}+1, & \text { if } x<0 \\ 3, & \text { if } x=0 \\ 2 x+3, & \text { if } x>0\end{cases}
$$

Which of the following is true: $f(x)$ is continuous from the right but not from the left, at $x=0$. $f(x)$ is continuous from the left but not from the right, at $x=0 . f(x)$ is continuous at $x=0 . f(x)$ is neither continuous from the left nor from the right, at $x=0 . f(x)$ is undefined at $x=0$.

Convert $\frac{13 \pi}{6}$ from radians to degrees.
$390^{\circ} 420^{\circ} 330^{\circ} 300^{\circ} 360^{\circ}$

Find all values of $x$ in the interval $[0,2 \pi]$ that satisfy the equation

$$
\begin{gathered}
2 \sin x=\tan x \\
x=0, \frac{\pi}{3}, \pi, \frac{5 \pi}{3}, 2 \pi x=0, \frac{\pi}{6}, \pi, \frac{11 \pi}{6}, 2 \pi x=0, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, 2 \pi x=0, \frac{5 \pi}{6}, \pi, \frac{7 \pi}{6}, 2 \pi x=0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi
\end{gathered}
$$

Find $\lim _{x \rightarrow 0} \frac{\sin ^{2} 5 x}{x^{2}}$, if it exists.

2551 it does not exist 0
Find $\frac{d y}{d x}$ if $y=\frac{\sin x}{x}$
$\frac{x \cos x-\sin x}{x^{2}} 1 \cos x \frac{x \sin x-\cos x}{x^{2}} \frac{\sin x-\cos x}{x^{2}}$
If $f(x)=\sin ^{2}\left(x^{2}+1\right)$, find $f^{\prime}(x)$.
$4 x \sin \left(x^{2}+1\right) \cos \left(x^{2}+1\right) 4 x \sin \left(x^{2}+1\right) 4 x \cos \left(x^{2}+1\right) 2 \sin \left(x^{2}+1\right) 2 \sin \left(x^{2}+1\right) \cos \left(x^{2}+1\right)$
If $f(x)=\tan ^{2} x$, it can be shown that $f^{\prime}(x)=2 \frac{\sin x}{\cos ^{3} x}$ (you don't have to verify this). Find the equation of the tangent line to the graph of $y=\tan ^{2} x$ at $x=\frac{\pi}{3}$.
$y-3=8 \sqrt{3}\left(x-\frac{\pi}{3}\right) y-\frac{1}{3}=8 \sqrt{3}\left(x-\frac{\pi}{3}\right) y-3=\frac{\sqrt{3}}{8}\left(x-\frac{\pi}{3}\right) y-\frac{1}{3}=\frac{\sqrt{3}}{8}\left(x-\frac{\pi}{3}\right)$ the graph has no tangent line at $x=\frac{\pi}{3}$

Suppose that $F(x)=f(g(x))$ and suppose that you have the following information:

$$
\begin{array}{cccc}
f(2)=7 & f(4)=6 & g(2)=4 & g(4)=6 \\
f^{\prime}(2)=-3 & f^{\prime}(4)=5 & g^{\prime}(2)=3 & g^{\prime}(4)=-2
\end{array}
$$

Find $F^{\prime}(2)$.
$15-10-9-1221$
Use implicit differentiation to find $\frac{d y}{d x}$ if $x^{2}+x y+y^{3}=3$.
$\frac{-2 x-y}{x+3 y^{2}} \frac{-x^{2}-x-y}{3 y^{2}} \frac{-2 x+3 y^{2}}{x} \frac{-2 x}{x+3 y^{2}} \frac{-2 x}{3 y^{2}}$
For what value of $c$ is the following function continuous?

$$
f(x)= \begin{cases}c x^{2}+3, & \text { if } x \leq 1 \\ 2 x-3, & \text { if } x>1\end{cases}
$$

$c=-4 c=2 c=3 c=-3 c=0$
Find a second-degree polynomial $P(x)$ such that $P(1)=2, P^{\prime}(1)=5$, and $P^{\prime \prime}(1)=8$. (Recall that a second degree polynomial is one of the form $a x^{2}+b x+c$ for some constants $a, b$ and $c$.) Once you've found this polynomial, find $P(0)$.

10285

Let $f(x)=\sqrt{3 x+1}$. Find $f^{\prime \prime}(x)$.
$-\frac{9}{4} \cdot \frac{1}{(3 x+1)^{3 / 2}}-\frac{1}{4} \cdot \frac{1}{(3 x+1)^{3 / 2}}-\frac{3}{(3 x+1)^{2}}-\frac{9}{4} \cdot \frac{1}{\sqrt{3 x+1}}-\frac{1}{4} \cdot \frac{1}{\sqrt{3 x+1}}$
Car A is moving east at 40 mph , while Car B is moving south at 30 mph . At noon, Car A is 3 miles east of point P , while Car B is 4 miles north of point P . (See diagram.) Which of the following is true about the distance between Car A and Car B at noon?
the distance is not changing the distance is increasing by 5 mph the distance is decreasing by 5 mph the distance is increasing by 10 mph the distance is decreasing by 10 mph

The equation of motion for a certain particle moving along a straight line is given by $s=2 t^{3}-$ $4 t^{2}+3 t-5$ (where $s$ is in meters and $t$ is in seconds). Find the acceleration after 1 second.
$4 \mathrm{~m} / \sec ^{2}-8 \mathrm{~m} / \sec ^{2} 8 \mathrm{~m} / \sec ^{2} 0 \mathrm{~m} / \sec ^{2} 6 \mathrm{~m} / \sec ^{2}$
A balloon is constructed in the shape of a perfect cube, for a parade. It is being inflated at a rate of $36 \mathrm{ft}^{3} / \mathrm{min}$, always maintaining the shape of a cube. How quickly is the side of the balloon growing at the instant when the side is 2 ft . long?
$3 \mathrm{ft} / \min 1 \mathrm{ft} / \min 2 \mathrm{ft} / \min 4 \mathrm{ft} / \mathrm{min} 5 \mathrm{ft} / \mathrm{min}$
Find $\lim _{t \rightarrow 0} \frac{\cos t-1}{\sin 2 t}$, if it exists.
01 the limit does not exist $\frac{1}{2} 2$

Find the slope of the tangent line to the curve $y^{2}-6 x^{2}=1$ at the point $(2,5)$.
$\frac{12}{5} \frac{2}{5} \frac{24}{5} 03$
If a ball is thrown vertically upward from the top of a 48 -foot tower with a velocity of $32 \mathrm{ft} / \mathrm{sec}$, its height after $t$ seconds is $s=-16 t^{2}+32 t+48$. What is its velocity as it hits the ground?
$-64 \mathrm{ft} / \mathrm{sec}-32 \mathrm{ft} / \mathrm{sec}-16 \mathrm{ft} / \mathrm{sec}-48 \mathrm{ft} / \mathrm{sec}-80 \mathrm{ft} / \mathrm{sec}$
Of the five expressions listed below, which one is equal to $\sec x-\cos x$ ?
$\tan x \sin x \tan ^{2} x \cos ^{2} x \sin ^{2} x 0$
Find the third derivative, $f^{(3)}(x)$, of $f(x)=\sin 2 x$.
$-8 \cos 2 x 8 \cos 2 x-\cos 2 x \cos 2 x-2 \cos 2 x$

