Brief Article

The Author

November 3, 2004

Math 119: Calculus	Name:	Exam II
Instructor:	October 29, 1996	Time of MWF
class:		

Calculators are not allowed. Hand in this answer page only. Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 20 multiple choice questions, worth 5 points each.

You are taking this exam under the honor code.

Let

$$f(x) = \begin{cases} x^2 + 1, & \text{if } x < 0; \\ 3, & \text{if } x = 0; \\ 2x + 3, & \text{if } x > 0. \end{cases}$$

Which of the following is true: f(x) is continuous from the right but not from the left, at x = 0. f(x) is continuous from the left but not from the right, at x = 0. f(x) is continuous at x = 0. f(x) is neither continuous from the left nor from the right, at x = 0. f(x) is undefined at x = 0.

Convert $\frac{13\pi}{6}$ from radians to degrees.

 $390^{\circ} \ 420^{\circ} \ 330^{\circ} \ 300^{\circ} \ 360^{\circ}$

Find all values of x in the interval $[0, 2\pi]$ that satisfy the equation

$$2\sin x = \tan x$$

$$x = 0, \frac{\pi}{3}, \pi, \frac{5\pi}{3}, 2\pi \ x = 0, \frac{\pi}{6}, \pi, \frac{11\pi}{6}, 2\pi \ x = 0, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, 2\pi \ x = 0, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, 2\pi \ x = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$$

Find $\lim_{x \to 0} \frac{\sin^2 5x}{x^2}$, if it exists.

 $25\ 5\ 1$ it does not exist 0

Find
$$\frac{dy}{dx}$$
 if $y = \frac{\sin x}{x}$
 $\frac{x \cos x - \sin x}{x^2} + 1 \cos x \frac{x \sin x - \cos x}{x^2} \frac{\sin x - \cos x}{x^2}$
If $f(x) = \sin^2(x^2 + 1)$, find $f'(x)$.
 $4x \sin(x^2 + 1) \cos(x^2 + 1) + 4x \sin(x^2 + 1) + 4x \cos(x^2 + 1) + 2 \sin(x^2 + 1) \cos(x^2 + 1)$
If $f(x) = \tan^2 x$, it can be shown that $f'(x) = 2 \frac{\sin x}{\cos^3 x}$ (you don't have to verify this). Find the equation of the tangent line to the graph of $y = \tan^2 x$ at $x = \frac{\pi}{3}$.

$$y - 3 = 8\sqrt{3}\left(x - \frac{\pi}{3}\right)y - \frac{1}{3} = 8\sqrt{3}\left(x - \frac{\pi}{3}\right)y - 3 = \frac{\sqrt{3}}{8}\left(x - \frac{\pi}{3}\right)y - \frac{1}{3} = \frac{\sqrt{3}}{8}\left(x - \frac{\pi}{3}\right)$$
 the graph has no tangent line at $x = \frac{\pi}{3}$

Suppose that F(x) = f(g(x)) and suppose that you have the following information:

$$f(2) = 7$$
 $f(4) = 6$ $g(2) = 4$ $g(4) = 6$
 $f'(2) = -3$ $f'(4) = 5$ $g'(2) = 3$ $g'(4) = -2$

Find F'(2).

 $15\ -10\ -9\ -12\ 21$

Use implicit differentiation to find $\frac{dy}{dx}$ if $x^2 + xy + y^3 = 3$.

$$\frac{-2x-y}{x+3y^2} \ \frac{-x^2-x-y}{3y^2} \ \frac{-2x+3y^2}{x} \ \frac{-2x}{x+3y^2} \ \frac{-2x}{3y^2}$$

For what value of c is the following function continuous?

$$f(x) = \begin{cases} cx^2 + 3, & \text{if } x \le 1; \\ 2x - 3, & \text{if } x > 1. \end{cases}$$

 $c = -4 \ c = 2 \ c = 3 \ c = -3 \ c = 0$

Find a second-degree polynomial P(x) such that P(1) = 2, P'(1) = 5, and P''(1) = 8. (Recall that a second degree polynomial is one of the form $ax^2 + bx + c$ for some constants a, b and c.) Once you've found this polynomial, find P(0).

 $1\ 0\ 2\ 8\ 5$

Let
$$f(x) = \sqrt{3x+1}$$
. Find $f''(x)$.
 $-\frac{9}{4} \cdot \frac{1}{(3x+1)^{3/2}} - \frac{1}{4} \cdot \frac{1}{(3x+1)^{3/2}} - \frac{3}{(3x+1)^2} - \frac{9}{4} \cdot \frac{1}{\sqrt{3x+1}} - \frac{1}{4} \cdot \frac{1}{\sqrt{3x+1}}$

Car A is moving east at 40 mph, while Car B is moving south at 30 mph. At noon, Car A is 3 miles east of point P, while Car B is 4 miles north of point P. (See diagram.) Which of the following is true about the distance between Car A and Car B at noon?

the distance is not changing the distance is increasing by 5 mph the distance is decreasing by 5 mph the distance is increasing by 10 mph the distance is decreasing by 10 mph

The equation of motion for a certain particle moving along a straight line is given by $s = 2t^3 - 4t^2 + 3t - 5$ (where s is in meters and t is in seconds). Find the acceleration after 1 second.

 $4 \text{ m/sec}^2 - 8 \text{ m/sec}^2 8 \text{ m/sec}^2 0 \text{ m/sec}^2 6 \text{ m/sec}^2$

A balloon is constructed in the shape of a perfect cube, for a parade. It is being inflated at a rate of $36 \text{ ft}^3/\text{min}$, always maintaining the shape of a cube. How quickly is the side of the balloon growing at the instant when the side is 2 ft. long?

3 ft/min 1 ft/min 2 ft/min 4 ft/min 5 ft/min

Find $\lim_{t\to 0} \frac{\cos t - 1}{\sin 2t}$, if it exists.

0 1 the limit does not exist $\frac{1}{2}$ 2

Find the slope of the tangent line to the curve $y^2 - 6x^2 = 1$ at the point (2,5).

$$\frac{12}{5} \ \frac{2}{5} \ \frac{24}{5} \ 0 \ 3$$

If a ball is thrown vertically upward from the top of a 48-foot tower with a velocity of 32 ft/sec, its height after t seconds is $s = -16t^2 + 32t + 48$. What is its velocity as it hits the ground?

-64 ft/sec -32 ft/sec -16 ft/sec -48 ft/sec -80 ft/sec

Of the five expressions listed below, which one is equal to $\sec x - \cos x$?

 $\tan x \sin x \, \tan^2 x \, \cos^2 x \, \sin^2 x \, 0$

Find the third derivative, $f^{(3)}(x)$, of $f(x) = \sin 2x$.

 $-8\cos 2x \ 8\cos 2x \ -\cos 2x \ \cos 2x \ -2\cos 2x$