amsppt

document

Instructor: Fr. William Hamill

Math 119 - Fall 97

1.(3)
$$\lim_{x\to 0} \sin xx^2 + 3x =$$

- (A) 1
- (B) 13
- (C) 3
- (D) ∞ (E) Does not exist

2.(14) If
$$f(x) = x^2 \sin 1x$$
, then $f'(x) =$

- (A) $2x\sin 1x x^2\cos 1x$
- (B) $2x \cos 1x$ (C) $2x \cos 1x$

$$(D)2x\sin 1x - \cos 1x$$

$$(E) - \cos 1x$$

3.(15) If
$$y = \sqrt{x^2 + 16}$$
, then $d^2ydx^2 =$

(A)
$$-1(x^2+16)^{32}$$
 (B) $4(x^2+16)$ (C) $16\sqrt{x^2+16}$

(B)
$$4(x^2+16)$$

(C)
$$16\sqrt{x^2+16}$$

(D)
$$2x^2 + 16(x^2 + 16)^{32}$$
 (E) $16(x^2 + 16)^{32}$

(E)
$$16(x^2+16)^{32}$$

4.(18) If
$$f(x) = 1 + x^2 1 - x^2$$
, then $f'(x) =$

(A)
$$-4x(1-x^2)^2$$
 (B) $4x(1-x^2)^2$ (C) $-4x^2(1-x^2)^2$

(B)
$$4x(1-x^2)^2$$

(C)
$$-4x^2(1-x^2)^2$$

(D)
$$2x(1-x^2)$$
 (E) $4(1-x^2)$

(E)
$$4(1-x^2)$$

5.(20)
$$ddx \sin^3(1-2x) =$$

(A)
$$6\sin^2(1-2x)\cos(1-2x)$$
 (B) $-2\cos^3(1-2x)$ (C) $-6\sin^2(1-2x)$

(B)
$$-2\cos^3(1-2x)$$

(C)
$$-6\sin^2(1-2x)$$

(D)
$$-6\sin^2(1-2x)\cos(1-2x)$$
 (E) $-6\cos^2(1-2x)$

(E)
$$-6\cos^2(1-2x)$$

6.(22) The slope of the curve
$$y^3 - xy^2 = 4$$
 at the point where $y = 2$ is

$$(A) -2$$

(C)
$$12$$
 (D) -12

7.(32) If
$$tan(xy) = x$$
, then $dydx = x$

(both 6 in). min. when i	Liquid is be t becomes com	ape of a cone withing poured throupletely clogged. The eliquid is 2 in (ugh at the How fast is	rate of 2 the level of	cu. in per
(A) 1 <	t < 3	(B) $-2 < t < 3$	(C)	t > 3	
	(D) t	< 1 or t > 3	(E) all	t	
		on along a line is nzero constant, t			
(A) $k^2 \nu$	(B) k^2s (C	k) k (D) 0	(E) None of these		
What is the	e total distance determine the	ne such that its pe traveled by the total distanced	e point bet	t = t	1 and $t =$
(A) 1	(B) 43	(C) 53	(D)2	(E) 5	
11.(48) The minimum value of $f(x) = x^2 + 2x$ on the interval [12, 2] is					
(A) -12	(B) 1	(C) 3	(D)92	(E) 5	
12.(51) To (Hint: $\sqrt[3]{125}$	_	ndredth, $\sqrt[3]{128}$ a	pproximate	ly equals	
(A) 5.28	(B) 5.02	(C) 5.04	(D)	5.07	(E) 5.10
	(x) is a continumate that (x) is a continumate (x) is a continumate (x) is a continumate (x) .	ious function at	the point c ,	which of t	he following
(A) $\lim_{x \to c} f(x)$ exist		(B) $\lim_{x \to c} f(x) =$	f(c)	(C) $f'(c)$	exist

(A) $1 - \tan(xy)\sec(xy)x\tan(xy)\sec(xy)$ (B) $\sec^2(xy) - yx$ $\cos^2(xy)$

 $(D)\cos^2(xy)x$ $(E)\cos^2(xy) - yx$

(C)

(D) f(c) is defined (E) $\lim_{x \to +} f(x) = \lim_{x \to c^{-}} f(x)$

14.(55) Let f and g be differentiable functions such that

$$f(1) = 2f'(1) = 3f'(2) = -4$$

(A) -9 (B) -4 (C) 0 (D) 12

(E) 15