amsppt
document

Instructor: Fr. William Hamill
Math 119 - Fall 97
Exam 2
1.(3) $\lim _{x \rightarrow 0} \sin x x^{2}+3 x=$
(A) 1
(B) 13
(C) 3
(D) ∞
(E) Does not exist
2.(14) If $f(x)=x^{2} \sin 1 x$, then $f^{\prime}(x)=$
(A) $2 x \sin 1 x-x^{2} \cos 1 x$
(B) $2 x \cos 1 x$
(C) $2 x \cos 1 x$
(D) $2 x \sin 1 x-\cos 1 x$
(E) $-\cos 1 x$
3.(15) If $y=\sqrt{x^{2}+16}$, then $d^{2} y d x^{2}=$
(A) $-1\left(x^{2}+16\right)^{32}$
(B) $4\left(x^{2}+16\right)$
(C) $16 \sqrt{x^{2}+16}$
(D) $2 x^{2}+16\left(x^{2}+16\right)^{32}$
(E) $16\left(x^{2}+16\right)^{32}$
4.(18) If $f(x)=1+x^{2} 1-x^{2}$, then $f^{\prime}(x)=$
(A) $-4 x\left(1-x^{2}\right)^{2}$
(B) $4 x\left(1-x^{2}\right)^{2}$
(C) $-4 x^{2}\left(1-x^{2}\right)^{2}$
(D) $2 x\left(1-x^{2}\right)$
(E) $4\left(1-x^{2}\right.$
5.(20) $d d x \sin ^{3}(1-2 x)=$
(A) $6 \sin ^{2}(1-2 x) \cos (1-2 x)$
(B) $-2 \cos ^{3}(1-2 x)$
(C) $-6 \sin ^{2}(1-2 x)$
(D) $-6 \sin ^{2}(1-2 x) \cos (1-2 x)$
(E) $-6 \cos ^{2}(1-2 x)$
6.(22) The slope of the curve $y^{3}-x y^{2}=4$ at the point where $y=2$ is
(A) -2
(B) 14
(C) 12
(D) -12
(E) 2
7.(32) If $\tan (x y)=x$, then $d y d x=$

$$
\begin{align*}
& \quad(\mathrm{A}) 1-\tan (x y) \sec (x y) x \tan (x y) \sec (x y) \quad(\mathrm{B}) \sec ^{2}(x y)-y x \tag{C}\\
& \cos ^{2}(x y)
\end{align*}
$$

$$
(\mathrm{D}) \cos ^{2}(x y) x \quad(\mathrm{E}) \cos ^{2}(x y)-y x
$$

8.(37) A funnel is in the shape of a cone with the height equal to the diameter (both 6 in). Liquid is being poured through at the rate of 2 cu . in per min. when it becomes completely clogged. How fast is the level of the liquid risingwhen the depth of the liquid is 2 in $\left(V=13 \pi r^{2} h\right)$.
(A) $1<t<3$
(B) $-2<t<3$
(C) $|t|>3$
(D) $t<1$ or $t>3$
(E) all t
9.(42) If a particle's motion along a line is given by $s=f(t)$ and its velocity by $v=k s$, where k is a nonzero constant, then the particle's acceleration is
(A) $k^{2} \nu$
(B) $k^{2} s$
(C) k
(D) 0
(E) None of these
10.(45) A point moves a line such that its position is given by $x(t)=8 t-3 t^{2}$. What is the total distance traveled by the point between $t=1$ and $t=$ 2? (Note: determine the total distanced traveled by the particle, not the displacement)
(A) 1
(B) 43
(C) 53
(D) 2
(E) 5
11.(48) The minimum value of $f(x)=x^{2}+2 x$ on the interval $[12,2]$ is
(A) -12
(B) 1
(C) 3
(D) 92
(E) 5
12.(51) To the nearest hundredth, $\sqrt[3]{128}$ approximately equals (Hint: $\sqrt[3]{125}=5$)
(A) 5.28
(B) 5.02
(C) 5.04
(D) 5.07
(E) 5.10
13.(53) If $f(x)$ is a continuous function at the point c, which of the following statements may be false?
(A) $\lim _{x \rightarrow c} f(x)$ exist
(B) $\lim _{x \rightarrow c} f(x)=f(c)$
(C) $f^{\prime}(c)$ exist
(D) $f(c)$ is defined
(E) $\lim _{x \rightarrow+} f(x)=\lim _{x \rightarrow c^{-}} f(x)$
14.(55) Let f and g be differentiable functions such that

$$
f(1)=2 f^{\prime}(1)=3 f^{\prime}(2)=-4
$$

(A) -9
(B) -4
(C) 0
(D) 12
(E) 15

