Math 119
Name:
Instructor:
Section:

Find the equation of the line parallel to the line $2 x+5 y=6$ which passes through the point $(-1,1) . y=-\frac{2}{5} x+\frac{3}{5} y=\frac{3}{5} x+-\frac{2}{5} y=-x+1 y=-\frac{3}{5} x+-\frac{2}{5} y=\frac{2}{5} x+\frac{2}{5}$

Find the domain of the function $y=\sqrt{x^{2}-3 x+2} .\{x: x \leq 1$ or $x \geq 2\}\{x: x \leq$ -2 or $x \geq-1\}\{x: 1 \leq x \leq 2\}\{x:-2<x<-1\}\{x: x<1$ or $x>2\}$

Which equation does not determine a function? $x^{2}+y^{2}=4 \frac{x}{y}=2$, for $y \neq 0$ $2 x+3 y=6 y=\sqrt{x^{3}-1}, \quad$ for $x \geq 05 y=\tan 3 x$

On what intervals is the following function f continuous?

$$
f(x)=\sqrt{x+2}+\frac{x+1}{x-1}+|x-2|
$$

$[-2,1)$ and $(1, \infty)[-2, \infty)(-2,2)(-2,-1)$ and $(1, \infty)(-\infty, 2]$
If $f(x)=x^{2}$, which one is the possible function g such that $(f \circ g)(x)=x^{2}-10 x+25$? $g(x)=x-5 g(x)=x+5 g(x)=x^{2}+5 g(x)=x^{2}-5 g(x)=-x-5$

Which one has the well-defined limit? $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x}-1} \lim _{x \rightarrow 4} \sqrt{x^{2}-25} \lim _{x \rightarrow-1} \sqrt{x+1}$ $\lim _{x \rightarrow 0} \frac{1}{x^{4}}$ All of them are well-defined.

For what value of α is the function

$$
f(x)= \begin{cases}\frac{x^{3}-1}{x-1} & \text { if } x \neq 1 ; \\ \alpha & \text { if } x=1\end{cases}
$$

continuous at $x=1$? $301-1$ It cannot be continous for any α.
If the distance of a particle travels is given by $s(t)=t^{3}+t^{2}+6$ kilometers after t hours, how fast is it traveling (in km/hr) after 2 hours? 16571718

Let

$$
f(x)= \begin{cases}0 & \text { if } x<0 \\ x & \text { if } 0 \leq x \leq 1 \\ x^{3} & \text { if } x>1\end{cases}
$$

Which of the following statements is true about the function f ? It is continuous at every x, and it has a derivative for all x except $x=0$ and 1 It is continuous at all x except $x=0$ and 1 It is continuous at every x, and it has a derivative for all x except $x=0$ It is continuous at all x except $x=0$ and 1 , and it has a derivative for all x except $x=1$ It is continuous at every x except $x=1$, and it has a derivative for all x except $x=1$

Find $\lim _{x \rightarrow 3^{-}} \frac{|x-3|}{-x+3} 1-102$ It does not exist.
Find the graph of $y=\cos \frac{x}{2}$.
If $\lim _{x \rightarrow 1} f(x) g(x)=-1$ and $\lim _{x \rightarrow 1}(f(x)+g(x))=0$, find all possible $\lim _{x \rightarrow 1} f(x)$. (Assume that $\lim _{x \rightarrow 1} f(x)$ and $\lim _{x \rightarrow 1} g(x)$ exist.) $\pm 11-102$

Find the equation of the tangent line to $y=x \sqrt{x}+1$ at $(1,2) . y=\frac{3}{2} x+\frac{1}{2} y=-\frac{3}{2} x+\frac{1}{2}$ $y=\frac{2}{3} x y=\frac{2}{3} x+\frac{1}{2} y=-\frac{2}{3} x$

Which statement is false? If f and g are differentiable, then $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g^{\prime}(x)$ If f is differentiable at a, then f is continuous at $a \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ If p is a polyomial, then $\lim _{x \rightarrow b} p(x)=p(b)$ If $f^{\prime}(a)$ exists, then $\lim _{x \rightarrow a} f(x)=f(a)$
(Partial Credit) Let $f(x)=\frac{|x|}{x}$ and $g(x)=x^{2}$. Find $f \circ g$ and $g \circ f$, and determine the domain of each.
(Partial Credit) Explain why $\lim _{x \rightarrow 0} \frac{1}{x^{3}}$ does not exist. That's all folks!

