Math 119

Name:___

Exam I

Instructor:

Section: February 10, 1997 Find the equation of the line parallel to the line 2x + 5y = 6 which passes through the

point (-1,1). $y = -\frac{2}{5}x + \frac{3}{5}y = \frac{3}{5}x + -\frac{2}{5}y = -x + 1y = -\frac{3}{5}x + -\frac{2}{5}y = \frac{2}{5}x + \frac{2}{5}$ Find the domain of the function $y = \sqrt{x^2 - 3x + 2}$. $\{x : x \le 1 \text{ or } x \ge 2\}$ $\{x : x \le 1$

-2 or $x \ge -1$ { $x: 1 \le x \le 2$ } {x: -2 < x < -1} {x: x < 1 or x > 2} Which equation does **not** determine a function? $x^2 + y^2 = 4 \frac{x}{y} = 2$, for $y \ne 0$ 2x + 3y = 6 $y = \sqrt{x^3 - 1}$, for $x \ge 0$ $5y = \tan 3x$

On what intervals is the following function f continuous?

$$f(x) = \sqrt{x+2} + \frac{x+1}{x-1} + |x-2|$$

[-2,1) and $(1,\infty)$ $[-2,\infty)$ (-2,2) (-2,-1) and $(1,\infty)$ $(-\infty,2]$

If $f(x) = x^2$, which one is the possible function g such that $(f \circ g)(x) = x^2 - 10x + 25$? $g(x) = x - 5 g(x) = x + 5 g(x) = x^{2} + 5 g(x) = x^{2} - 5 g(x) = -x - 5$

Which one has the well-defined limit? $\lim_{x\to 1} \frac{x-1}{\sqrt{x-1}} \lim_{x\to 4} \sqrt{x^2-25} \lim_{x\to -1} \sqrt{x+1}$ $\lim_{x\to 0} \frac{1}{x^4}$ All of them are well-defined.

For what value of α is the function

$$f(x) = \begin{cases} \frac{x^3 - 1}{x - 1} & \text{if } x \neq 1; \\ \alpha & \text{if } x = 1 \end{cases}$$

continuous at x = 1? 3 0 1 -1 It cannot be continuous for any α .

If the distance of a particle travels is given by $s(t) = t^3 + t^2 + 6$ kilometers after t hours, how fast is it traveling (in km/hr) after 2 hours? 16 5 7 17 18

Let

$$f(x) = \begin{cases} 0 & \text{if } x < 0; \\ x & \text{if } 0 \le x \le 1; \\ x^3 & \text{if } x > 1 \end{cases}$$

Which of the following statements is true about the function f? It is continuous at every x, and it has a derivative for all x except x = 0 and 1 It is continuous at all x except x = 0 and 1 It is continuous at every x, and it has a derivative for all x except x = 0 It is continuous at all x except x = 0 and 1, and it has a derivative for all x except x = 1 It is continuous at every x except x = 1, and it has a derivative for all x except x = 1

Find $\lim_{x\to 3^-} \frac{|x-3|}{-x+3} = 1$, and it has a defined $\lim_{x\to 3^-} \frac{|x-3|}{-x+3} = 1 - 1 = 0$. Find the graph of $y = \cos \frac{x}{2}$.

If $\lim_{x\to 1} f(x)g(x) = -1$ and $\lim_{x\to 1} (f(x) + g(x)) = 0$, find all possible $\lim_{x\to 1} f(x)$. (Assume that $\lim_{x\to 1} f(x)$ and $\lim_{x\to 1} g(x)$ exist.) $\pm 1 \ 1 \ -1 \ 0 \ 2$

Find the equation of the tangent line to $y = x\sqrt{x} + 1$ at (1,2). $y = \frac{3}{2}x + \frac{1}{2}y = -\frac{3}{2}x + \frac{1}{2}$ $y = \frac{2}{3}x \ y = \frac{2}{3}x + \frac{1}{2} \ y = -\frac{2}{3}x$

Which statement is false? If f and g are differentiable, then $\frac{d}{dx}[f(x)g(x)] = f'(x)g'(x)$ If f is differentiable at a, then f is continuous at $a \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$ If p is a polyomial, then $\lim_{x \to b} p(x) = p(b)$ If f'(a) exists, then $\lim_{x \to a} f(x) = f(a)$

(Partial Credit) Let $f(x) = \frac{|x|}{x}$ and $g(x) = x^2$. Find $f \circ g$ and $g \circ f$, and determine the domain of each. (Partial Credit) Explain why $\lim_{x\to 0} \frac{1}{x^3}$ does not exist. That's all folks!