Math 119

Name:_

Exam I Instructor:_

March 17, 1997

Section:___

Let $f(x) = \sqrt{x}$. For what value of x is the tangent to this curve parallel to the line -x + 8y = 10? 16

A ladder 8 m long leans against a wall 6 m high. If the lower end of the ladder is pulled away from the wall at a rate of 2m/sec, how fast (radian/sec) is the angle between the top of the ladder and the wall changing when the angle is $60^{\circ} = \frac{\pi}{3}$ radians? $\frac{1}{2} \ 2 \ \pi \ \frac{1}{2} \pi \ 1$

If
$$y = \sin(x+y)$$
, find $\frac{dy}{dx}$. $\frac{\cos(x+y)}{1-\cos(x+y)} \frac{-\cos(x+y)}{1-\cos(x+y)} \frac{\cos(x+y)}{1+\cos(x+y)} \frac{\cos(x+y)}{1-\sin(x+y)} \frac{-\sin(x+y)}{1-\cos(x+y)}$
Find $\frac{d}{dx} \tan^2 \sqrt{x}$. $\frac{\tan \sqrt{x} \sec^2 \sqrt{x}}{\sqrt{x}} \frac{\tan \sqrt{x} \sec^2 x}{\sqrt{x}} \frac{-\tan \sqrt{x} \sec^2 \sqrt{x}}{x} \frac{-\cos x + y}{x} \frac{-\sec x - x}{x} \frac{-\sec x - x}{x} \frac{-\sec x - x}{x} \frac{-\sec x - x}{x}$
Find $\frac{dy}{dx}$ if $\frac{1}{x} + \frac{1}{y} = 1$. $-\frac{y^2}{x^2} \frac{y^2}{x^2} \frac{y}{x} - \frac{y}{x} \frac{1}{x^2} - \frac{1}{y^2}$
Find $\lim_{x\to 2} \frac{\sin(x-2)}{x^2-2x}$. $\frac{1}{2} 1 - 1$ 0 does not exist.
Suppose f has a derivative at f and $f'(f) < 0$. Which of the following statements is

Find
$$\frac{dy}{dx}$$
 if $\frac{1}{x} + \frac{1}{y} = 1$. $-\frac{y^2}{x^2} \frac{y^2}{x^2} \frac{y}{x} - \frac{y}{x} \frac{1}{x^2} - \frac{1}{y^2}$

Suppose f has a derivative at c and f'(c) < 0. Which of the following statements is true? f can not have either a local maximum or local minimum at c. f must have a local maximum at c. f must have a local minimum at c. c must be a critical point of f.

Find the equation of the line tangent to the curve $xy + x^2y^2 = 2$ at (1,1) y = -x + 2 y = -x - 2y = x + 1 y = 2 y = x + 2

Suppose

$$f(x) = \begin{cases} \sin x & \text{if } x \le 0\\ \tan x & \text{if } 0 < x < \pi/2\\ \cos x & \text{if } x \ge \pi/2 \end{cases}$$

Where is f continuous? Everywhere but $x = \pi/2$ Everywhere but x = 0 Everywhere but x = 0 and $x = \pi/2$ Everywhere Nowhere

If a ball is thrown upward with an initial velocity of 40 ft/sec from the top of a 30 foot building, its height after t seconds is given by the formula

$$h = -16t^2 + 40t + 30.$$

How many seconds after it is thrown does it stop moving upwards and start moving downwards? 5/4 3/5 6/5 3/2 7/8

Which of the following statements is true for a function $f(x) = x^3$? it has a critical point at x = 0but neither a local maximum nor local minimum there it has no critical point it has a critical point, local maximum and local minimum at x=0 it has a local maximum and local minimum at x=0 but not a critical point there it has a critical point at x = 0 and a local maximum at x = 0 but not a local minimum there

Which statement is true? If f'(r) exists, then $\lim_{x\to r} f(x) = f(r)$ $D(\sec x) = D(\tan^2 x)$ If f'(x) > 0 for all x in (a,b), then f is decreasing on [a,b]. $\frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$ If f has an absolute minimum value at c, then f'(c) = 0

Suppose that h(x) = f(x)g(x) and $F(x) = (f \circ g)(x)$ where f(1) = 2, f'(1) = -1, f'(0) = 3, g(1) = 0and g'(1) = 1. Find h'(1) and F'(1). 2 and 3 -1 and 3 -1 and 0 2 and 0 0 and -2

Suppose f is a differentiable function such that f(g(x)) = x and f'(x) = 2 + f(x). What is g''(x)? $\frac{-1}{(x+2)^2} \frac{-1}{(x+2)} \frac{1}{(x+2)^2} \frac{1}{(x+2)} -x$

Partial Credit Find the local, absolute maximum and absolute minimum values of f(x) = x - 1 $\sqrt{2}\sin x$ on $[0,\pi]$.

Partial Credit Determine whether the following statement is true or false and state the reason of your determination.

If f'(c) = 0, then f has a local maximum or minimum at c.

That's all folks!