Instructor:

March 17, 1997
Section:
Let $f(x)=\sqrt{x}$. For what value of x is the tangent to this curve parallel to the line $-x+8 y=10$? 16 42-2-4

A ladder 8 m long leans against a wall 6 m high. If the lower end of the ladder is pulled away from the wall at a rate of $2 \mathrm{~m} / \mathrm{sec}$, how fast (radian $/ \mathrm{sec}$) is the angle between the top of the ladder and the wall changing when the angle is $60^{\circ}=\frac{\pi}{3}$ radians? $\frac{1}{2} 2 \pi \frac{1}{2} \pi 1$

If $y=\sin (x+y)$, find $\frac{d y}{d x} \cdot \frac{\cos (x+y)}{1-\cos (x+y)} \frac{-\cos (x+y)}{1-\cos (x+y)} \frac{\cos (x+y)}{1+\cos (x+y)} \frac{\cos (x+y)}{1-\sin (x+y)} \frac{-\sin (x+y)}{1-\cos (x+y)}$
Find $\frac{d}{d x} \tan ^{2} \sqrt{x} \cdot \frac{\tan \sqrt{x} \sec ^{2} \sqrt{x}}{\sqrt{x}} \frac{\tan \sqrt{x} \sec ^{2} x}{\sqrt{x}} \frac{-\tan \sqrt{x} \sec ^{2} \sqrt{x}}{x} \frac{-\sec \sqrt{x} \sec ^{2} x}{\sqrt{x}} \frac{\sec \sqrt{x} \tan ^{2} \sqrt{x}}{x}$
Find $\frac{d y}{d x}$ if $\frac{1}{x}+\frac{1}{y}=1 .-\frac{y^{2}}{x^{2}} \frac{y^{2}}{x^{2}} \frac{y}{x}-\frac{y}{x} \frac{1}{x^{2}}-\frac{1}{y^{2}}$
Find $\lim _{x \rightarrow 2} \frac{\sin (x-2)}{x^{2}-2 x} \cdot \frac{1}{2} 1-10$ does not exist.
Suppose f has a derivative at c and $f^{\prime}(c)<0$. Which of the following statements is true? f can not have either a local maximum or local minimum at $c . f$ must have a local maximum at $c . f$ must have a local minimum at $c . c$ must be a critical point of f.

Find the equation of the line tangent to the curve $x y+x^{2} y^{2}=2$ at $(1,1) y=-x+2 y=-x-2$ $y=x+1 y=2 y=x+2$

Suppose

$$
f(x)= \begin{cases}\sin x & \text { if } x \leq 0 \\ \tan x & \text { if } 0<x<\pi / 2 \\ \cos x & \text { if } x \geq \pi / 2\end{cases}
$$

Where is f continuous? Everywhere but $x=\pi / 2$ Everywhere but $x=0$ Everywhere but $x=0$ and $x=\pi / 2$ Everywhere Nowhere

If a ball is thrown upward with an initial velocity of $40 \mathrm{ft} / \mathrm{sec}$ from the top of a 30 foot building, its height after t seconds is given by the formula

$$
h=-16 t^{2}+40 t+30
$$

How many seconds after it is thrown does it stop moving upwards and start moving downwards? 5/4 3/5 6/5 3/2 7/8

Which of the following statements is true for a function $f(x)=x^{3}$? it has a critical point at $x=0$ but neither a local maximum nor local minimum there it has no critical point it has a critical point, local maximum and local minimumat $x=0$ it has a local maximum and local minimum at $x=0$ but not a critical point there it has a critical point at $x=0$ and a local maximum at $x=0$ but not a local minimum there

Which statement is true? If $f^{\prime}(r)$ exists, then $\lim _{x \rightarrow r} f(x)=f(r) D(\sec x)=D\left(\tan ^{2} x\right)$ If $f^{\prime}(x)>0$ for all x in (a, b), then f is decreasing on $[a, b] \cdot \frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$ If f has an absolute minimum value at c, then $f^{\prime}(c)=0$

Suppose that $h(x)=f(x) g(x)$ and $F(x)=(f \circ g)(x)$ where $f(1)=2, f^{\prime}(1)=-1, f^{\prime}(0)=3, g(1)=0$ and $g^{\prime}(1)=1$. Find $h^{\prime}(1)$ and $F^{\prime}(1) .2$ and $3-1$ and $3-1$ and 02 and 00 and -2

Suppose f is a differentiable function such that $f(g(x))=x$ and $f^{\prime}(x)=2+f(x)$. What is $g^{\prime \prime}(x)$? $\frac{-1}{(x+2)^{2}} \frac{-1}{(x+2)} \frac{1}{(x+2)^{2}} \frac{1}{(x+2)}-x$

Partial Credit Find the local, absolute maximum and absolute minimum values of $f(x)=x-$ $\sqrt{2} \sin x$ on $[0, \pi]$.

Partial Credit
Determine whether the following statement is true or false and state the reason of your determination.

If $f^{\prime}(c)=0$, then f has a local maximum or minimum at c.

That's all folks!

