Math 119

Name:
Instructor: \qquad
Section: \qquad
April 14, 1997
Where on the interval $(0,2 \pi)$ is the graph of

$$
f(x)=x^{2}+\sin x
$$

concave up? on $(0,2 \pi)$ nowhere on $(0, \pi)$ on $\left(0, \frac{\pi}{2}\right)$ and $\left(\pi, \frac{3 \pi}{2}\right)$ on $\left(\frac{\pi}{2}, \pi\right)$ and $\left(\frac{3 \pi}{2}, 2 \pi\right)$
Which of the following is true? if $f(-x)=f(x)$, then f is symmetric around y-axis if f has an absolute minimum value at c, then $f^{\prime}(c)=0$ if $f^{\prime \prime}(c)=0$, then $(c, f(c))$ is an inflection point of the curve $y=f(x)$ if $f^{\prime}(x)=g^{\prime}(x)$ for $0<x<1$, then $f(x)=g(x)$ for $0<x<1 . \sum_{i=1}^{n} a_{i} b_{i}=\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{i=1}^{n} b_{i}\right)$

How many real roots does the quartic equation $x^{4}+10 x^{2}+21$ have? none 1234
Find $f(x)$ if $f^{\prime}(x)=\sec x \tan x$ and $f(0)=0 . \sec x-1-\sec x \tan x \sec x \tan x \sec x+1 \tan x$
Find $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x+1}-\sqrt{x^{2}-x}\right)$. 1-1 02 does not exist
Find all the points on the hyperbola $y^{2}-x^{2}=4$ which are closest to the point $(2,0) \cdot(1, \pm \sqrt{3})(1, \sqrt{3})$ $(0,1)(\sqrt{2}, 1)(-\sqrt{3}, 1)$

Given that the graph of f passes through the point $(1,2)$ and the slope of its tangent line at $(x, f(x))$ is $2 x-1$, find $f(0) .2-20 \frac{1}{2}-\frac{1}{2}$

Which of the following lines are vertical asymptotes of the graph of $y=\tan 2 x ? x=-\frac{\pi}{4}$ and $x=\frac{\pi}{4}$ $y=0 x=-\frac{\pi}{2}$ and $x=\frac{\pi}{2} x=0 x=-\pi$ and $x=\pi$

An open-top box with a square base is to be made in such a way that its volume equals 4 cubic feet. Let S stand for the total surface area of the box. Which of the following statements is true? There is a minimum possible value for S, but not a maximum. There is a maximum possible value for S, but not a minimum. There are both minimum and maximum possible values for S. There is neither a minimum nor a maximum possible value for S. More information is needed to determine if there are minimum and/or maximum possible values for S.

Calculate $\sum_{k=0}^{4} \cos \frac{k \pi}{2} 11+\frac{\sqrt{3}}{2}-10 \frac{1}{2}$
Find $\lim _{x \rightarrow \infty} x \sin (1 / x)$. $10-1$ undefined because it approaches ∞ undefined because it approaches $-\infty$

Find all the horizontal and vertical asymptotes of $y=\frac{\sqrt{x^{2}-9}}{2 x-6} . \quad y= \pm \frac{1}{2}, x=3 y=\frac{1}{2}, x=-3 y=$ $-\frac{1}{2}, x=-3$ no horizontal asymptote, $x=3$ no horizontal or vertical asymptotes

Find a description which is false for a curve $y=f(x)$ having the following characteristic (assume the domain of f is $(-\infty, \infty))$:

$$
\begin{gathered}
f^{\prime}(2)=f^{\prime}(-2)=0 \\
f^{\prime}(x)>0 \text { for }|x|>2 \\
f^{\prime}(x)<0 \text { for }|x|<2 \\
f^{\prime \prime}(x)<0 \quad \text { for } \quad x<0, \quad f^{\prime \prime}(x)>0 \quad \text { for } \quad x>0 \\
f(-2)=8, f(0)=4, f(2)=0
\end{gathered}
$$

increasing on $[-2,2] x=0, y=4$ is an inflection point of $f \mathrm{CD}$ on $(-\infty, 0) \mathrm{CU}$ on $(0, \infty) x= \pm 2$ are critical points of f

What is the general antiderivative of $f(x)=\frac{x^{2}+x}{x^{3 / 2}} . \frac{2}{3} x^{3 / 2}+2 x^{1 / 2}+C \frac{3}{2} x^{3 / 2}+2 x^{1 / 2}+C \frac{2}{3} x^{3 / 2}-2 x^{1 / 2}+C$ $x^{3 / 2}-2 x^{1 / 2}+C \frac{2}{3} x^{1 / 2}+2 x^{-1 / 2}+C$

Partial Credit An athletic field is to be built in the shape of a rectangle with a semi-circle attached to the east and west ends, as shown in the picture. The outer boundary is to be used as a race-track and is to be 2 miles long. What is the largest possible area of the rectangular part (shaded in the picture)?

Note: If your answer involves a rational number, such as π, or $\sqrt{2}$, leave it in that form.

Partial Credit \quad Sketch the graph of the curve $y=\left|x^{2}-3\right|$.

That's all folks!

