Math 119 Final Exam December 16, 1998

- 1. Find the domain of $f(x) = \left(\frac{(x-1)^2}{x-2}\right)^{1/3}$.
 - (a) (1,2)
 - (b) $(1,\infty)$
 - (c) $[2,\infty)$
 - (d) $(-\infty,2)\cup(2,\infty)$
 - (e) $(-\infty, 1) \cup (2, \infty)$
- **2.** Find $\lim_{x\to 0} \frac{\sqrt{x^2+3}-\sqrt{3}}{x}$.
 - (a) $\frac{1}{\sqrt{3}}$
 - **(b)** $\frac{1}{3\sqrt{3}}$
 - (c) $\sqrt{3}$
 - (d) $\frac{1}{\sqrt{6}}$
 - **(e)** 0
- 3. Find $\lim_{x \to -1} \frac{x+1}{x^2 x 2}$.
 - (a) $-\frac{1}{3}$ (b) $-\frac{1}{2}$ (c) -1(d) $-\frac{2}{3}$ (e) $-\frac{3}{2}$

The next 2 problems concern the following graph of the function f(x).

- **4.** Which of the following is closest to the value of f'(13)?
 - (a) 2.5
 - **(b)** 0.9
 - (c) 0.4
 - **(d)** -2.5
 - (e) The derivative doesn't exist.
- 5. Only one of the following assertions is true; find the true statement.
 - (a) f'(x) is non-negative for $0 \le x \le 13$.
 - **(b)** f(12) is larger than f(13).
 - (c) f'(10) is smaller than f'(13).
 - (d) f'(15) is larger than f'(13).
 - (e) f' is an increasing function on the interval [0, 13].
- **6.** Find the coordinates of the point on the curve

$$y = x^2 + x + 1$$

where the tangent line is parallel to the line y = 5x + 2.

- (a) (1,3)
- **(b)** (2,7)
- (c) (0,1)
- (d) (-1,1)
- (e) (-2,3)
- 7. Let $f(x) = 2x^2 + x + 3$ and let $h \neq 0$. Which of the following represents the quantity:

$$\frac{f(x+h) - f(x)}{h}$$

Note: This is not a limit.

- (a) $4x + 2h + h^2$
- **(b)** 4x + 1
- (c) 4x + 2h + 1
- (d) $2x^2 + x 2h$
- (e) $4x + 2h^3 + 1$
- 8. A stone is dropped into a lake, creating a circular ripple with radius increasing at a rate of 20 in/sec. Find the rate at which the area within the circle is increasing when the radius is 3 in.
 - (a) 6π
 - **(b)** 18π
 - (c) 60π
 - (d) 100π
 - (e) 120π

9. Find $\frac{d}{dx} \left[\sin(x^2 + 3) \right]$.

- (a) $\cos(2x)$
- **(b)** $2x\cos(x^2+3)$
- $(\mathbf{c}) \quad \cos(2x^3 + 6x)$
- (d) $-\cos(x^2+3)$
- (e) $\cos(x^2+3)+2x$

10. Find $\frac{d}{dx} \left[\frac{x+1}{(x^2+3)^2} \right]$.

- (a) $\frac{-3x^2 2x + 1}{(x^2 + 3)^3}$
- **(b)** $\frac{5x^2 2x + 1}{(x^2 + 3)^3}$
- (c) $\frac{-x^3 x^2 + x 3}{(x^2 + 3)^3}$
- (d) $\frac{1}{4x(x^2+3)}$
- (e) $\frac{3-4x-3x^2}{(x^2+3)^3}$

11. Find the absolute maximum and absolute minimum values of the function

$$f(x) = x^4 - 4x + 8$$

on the interval [0, 2].

- (a) maximum value 16, minimum value 5
- (b) maximum value 16, minimum value 1
- (c) maximum value 2, minimum value 0
- (d) maximum value 8, minimum value 5
- (e) maximum value 16, minimum value 8

12. If $f(x) = x \sin(2x)$, find the second derivative f''(x).

$$\mathbf{(a)} \quad f''(x) = \cos(2x)$$

(b)
$$f''(x) = 4\cos(2x)$$

(c)
$$f''(x) = 4\cos(2x) - 4x\sin(2x)$$

(d)
$$f''(x) = 3\cos x - 4x\sin x$$

(e)
$$f''(x) = 2\cos(2x) + 4x\sin(2x)$$

13. Let $x^2 + y^2 \sin x = 2$. What is $\frac{dy}{dx}$?

(a)
$$\frac{dy}{dx} = -\frac{x}{y\sin x}$$

(b)
$$\frac{dy}{dx} = 2 - \frac{y^2 \cos x + 2x}{2y \sin x}$$

(c)
$$\frac{dy}{dx} = 2x + 2y\sin x$$

(d)
$$\frac{dy}{dx} = -\frac{y^2 \cos x + 2x}{2y \sin x}$$

(e)
$$\frac{dy}{dx} = \frac{2 - x^2}{y \sin x}$$

14. Suppose that for $x \in [0, 2\pi]$, we define $g(x) = \sin^2 x$. On what intervals is g increasing?

(a)
$$[0, 2\pi]$$

(b)
$$\left[0, \frac{\pi}{2}\right] \cup \left[\pi, \frac{3\pi}{2}\right]$$

(c)
$$\left[\frac{\pi}{2},\pi\right]\cup\left[\frac{3\pi}{2},2\pi\right]$$

(d)
$$[0, \pi]$$

(e)
$$[\pi, 2\pi]$$

15. A balloon is rising vertically from a point A. It has constant speed of 5m/sec. A girl is watching from a position exactly 60m from A. How fast is the distance between the girl and the balloon increasing when the balloon is 80m high?

- (a) 2m/sec.
- (b) 4m/sec.
- (c) 6m/sec.
- (d) 8m/sec.
- (e) 10m/sec.
- **16.** On what intervals is $f(x) = \frac{3x-2}{4x-3}$ concave up?
 - (a) $\left(-\infty, \frac{3}{4}\right)$
 - **(b)** $\left(\frac{3}{4},\infty\right)$
 - (c) none
 - (d) $\left(-\infty, \frac{3}{4}\right) \cup \left(\frac{3}{4}, \infty\right)$
 - (e) $(-\infty, \infty)$
- 17. Compute $\lim_{x\to\infty} \frac{3x^3}{\sqrt{3x^3+1}}$
 - (a) $-\infty$
 - **(b)** 0
 - **(c)** 1
 - (d) $\sqrt{3}$
 - (e) ∞

18. Consider $f(x) = \frac{4}{x} + x$. Then f has

- (a) local minima at x = 2 and x = -2.
- (b) local maxima at x = 2 and x = -2.
- (c) a local minimum at x = -2 and a local maximum at x = 2.
- (d) a local minimum at x = 2 and a local maximum at x = -2.
- (e) no local extrema.

19. The product of two positive numbers is 400. What is the minimum their sum can be?

- (a) -20
- **(b)** 10
- **(c)** 40
- **(d)** 50
- **(e)** 100

20.
$$\sum_{i=1}^{100} (3i+1) =$$

- (a) 15150
- **(b)** 15250
- **(c)** 100200
- **(d)** 151250
- **(e)** 300100

21. The graph below is the graph of the **derivative** of a function f(x).

Which of the following graphs best represents the graph of f(x)?

- (a) (b) (c)
- (d) (e)
- **22.** Find the area under the graph of $y = x^3 + 1$ above the interval from 0 to 2 on the x-axis. The region is shown in the picture below, which is not to scale.
 - (a) 1
 - **(b)** 4.5
 - **(c)** 6
 - (d) 7
 - **(e)** 9

- **23.** Consider the function $f(x) = x^2 + 1$ on the interval [1,2]. Use the partition $\{1, \frac{3}{2}, 2\}$. Take x_i^* to be the right endpoint of the subinterval $[x_{i-1}, x_i]$. Calculate the Riemann sum $\sum_{i=1}^{\infty} f(x_i^*) \Delta x_i$ where $\Delta x_i = x_i - x_{i-1}$.
 - (a)
 - (b) $\frac{23}{4}$ (c) $\frac{21}{8}$ (d) $\frac{10}{3}$

 - (e)
- **24.** Calculate $\int (x^2 5x) dx$.
 - (a) x-5
 - **(b)** $-\frac{13}{6}$
 - (c) $\frac{x^3}{3} \frac{5}{2}x^2 + C$
 - (d) $x^2 5x + C$
 - (e) $\frac{x^3}{2} 5x^2 + C$
- **25.** Calculate $\int_{-1}^{2} (2x-1) dx$.
 - (a) 4
 - (b)
 - (c)
 - (d) 6
 - (e) 2