- 1. Let f(x) be a differentiable function of x. Which of the following expressions is the derivative of the function $g(x) = \frac{f(x)}{x^2}$?
 - (a) $\frac{2xf(x) x^2f'(x)}{x^4}$ (b) $2xf(x) \frac{f'(x)}{x^3}$ (c) $-2x^{-3}f^{'}(x) + x^{-2}f(x)$ (d) $\frac{x^2f'(x) 2xf(x)}{x^4}$
 - (e) $2xf(x) + \frac{f'(x)}{x^3}$

- 2. Assume $x \in \left[0, \frac{\pi}{2}\right]$. If $\sin x = \frac{3}{5}$ then $\tan x =$
 - (a) $\frac{4}{3}$ (b) $\frac{5}{4}$ (c) $\frac{4}{5}$ (d) $\frac{5}{3}$

- 3. Suppose that $f = g \circ h + h \circ g$, g(0) = 1 , h(0) = 2 , g'(0) = 3 , g'(2) = 5 , h'(0) = 6 , h'(1) = 7 then f'(0) =
 - (a) 51
- (b) 41
- (c) 31
- (d) 11
- (e) 21

4. Which of the following quantities is equal to

$$\lim_{h \to 0} \frac{(2+h)^3 - 8}{h}$$

- (a) 0
- (b) $3h^2$

- (c) 1 (d) $f'(2), f(x) = x^3$ (e) $f'(h), f(x) = x^2$

- 5. The volume V of a cube is increasing at a rate of $300 \mathrm{cm}^3$ per minute. How fast is the length L of each side increasing where L=10 cm ?
 - (a) 1cm/min
- (b) 100cm/min
- (c) 30 cm/min
- (d) 3cm/min
- (e) 10cm/min

6. Compute the indefinite integral

$$\int \frac{2x}{(x^2+1)^5} dx =$$

(a)
$$\frac{(x^2+1)^4}{4} + C$$

(b)
$$\frac{1}{x^4} + C$$

(c)
$$-\frac{(x^2+1)^4}{4} + C$$

(a)
$$\frac{(x^2+1)^4}{4} + C$$
 (b) $\frac{1}{x^4} + C$ (c) $-\frac{(x^2+1)^4}{4} + C$ (d) $\frac{1}{4(x^2+1)^4} + C$

(e)
$$-\frac{1}{4(x^2+1)^4} + C$$

7. The function $f(x) = \frac{x^2}{x^2 - 1}$ is increasing on the interval(s):

(a)
$$(-1,0) \cup (0,1)$$

(b)
$$(-\infty,0)$$

(c)
$$(-1,1)$$

$$(a) \quad (-1,0) \cup (0,1) \qquad (b) \quad (-\infty,0) \qquad (c) \quad (-1,1) \qquad (d) \quad (-\infty,-1) \cup (-1,0) \qquad (e) \quad (0,1) \cup (1,\infty)$$

(e)
$$(0,1) \cup (1,\infty)$$

- 8. Which of the following is $\frac{f(x+h)-f(x)}{h}$ if $f(x)=x^2+7x$? Note that you are not being asked to compute the limit as $h\to 0$.
 - (a) 2x + 7
- (b) 2x + 7x + h (c) 2x + 7 + h
- (d) 2x + 7h
- (e) $2xh + h^2$

9. Let

$$f(x) = (\sin(2x))^3.$$

Which of the following is f'(x)?

- (a) $-6(\sin(2x))^2\cos(2x)$ (b) $6(\sin(2x))^2\cos(2x)$ (c) $3(\sin(2x))^2\cos(2x)$ (d) $(\sin(2x))^2\cos(2x)$

(e) $3\sin(x)\cos(x)$

10. Which of the following equals

$$\int (\cos(x) + 5)^3 \sin(x) dx ?$$

- (a) $-\frac{(\cos(x)+5)^4}{5}$ (b) $-3(\cos(x)+5)^2$ (c) $-\frac{(\cos(x)+5)^4}{4}+C$ (d) $\frac{(\cos(x)+5)^4}{4}$

(e) $\frac{(\cos(x)+5)^4}{4} + C$

- 11. If $f(x) = x^2$, $0 \le x \le 6$, find the Riemann sum with n = 3 taking the sample points to be Midpoints.
 - (a) 70
- (b) 74
- (c) 35
- (d) 18
- (e) 9

- 12. Evaluate the integral $\int_0^{2\pi} (\sin x \cos x) \, dx$. The integral is equal to
 - (a) 0
- (b) 2
- (c) -1
- (d) 1
- (e) -2

- 13. Find the area enclosed by the curves y=x and $y=x^3$, between x=0 and x=1 .
 - (a) $\frac{3}{4}$
- (b) 1 (c) $-\frac{1}{4}$ (d) $\frac{1}{2}$ (e) $\frac{1}{4}$

- 14. A particle is moving in a straight line with position function $s(t) = \frac{t^3}{6}$. What is the average velocity over the time period [1,3].
 - (a) 4
- (b) 13

- (c) $\frac{13}{6}$ (d) $\frac{9}{2}$ (e) $\frac{13}{3}$

- 15. Find the equation of the tangent line to the curve $x^2 + y^2 = 169$ at the point (12,5).

- (a) y = -2x + 13 (b) y = -2.4x + 33.8 (c) $y = \frac{5}{12}x$ (d) y = 2.4x + 23.8 (e) $y = \frac{-5}{12}x$

- 16. Find horizontal and vertical asymptotes to $f(x) = \frac{1}{x} + \frac{1}{x+1}$.
 - (a) vertical asymptotes at x = 0, horizontal asymptotes at y = -1
 - (b) vertical asymptotes at x = 0 and x = 1, horizontal asymptotes at ∞
 - vertical asymptotes at x = 0, horizontal asymptotes at y = 0
 - vertical asymptotes at x = 0 and x = -1, horizontal asymptotes at y = 1
 - vertical asymptotes at x = 0 and x = -1, horizontal asymptotes at y = 0

- 17. Evaluate the integral $\int_0^1 \sqrt[3]{x}(x-1)dx$.
 - (a) $\frac{-3}{7}$ (b) $\frac{-9}{28}$ (c) $\frac{3}{7}$
- (d) -6

- 18. Evaluate the integral $\int (1-x)\sqrt{2x-x^2}dx$.

 - (a) $(2x-x^2)^{\frac{3}{2}} + C$ (b) $\frac{1}{3}(2x-x^2)^{\frac{3}{2}} + C$ (c) $(2-x)^{\frac{3}{2}} + C$ (d) $-(2x-x^2)^{-\frac{1}{2}} + C$

(e) $(2x - x^2)^{-\frac{1}{2}} + C$

19. Which of the following numbers is equal to the value of the limit

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$$

- (a) 2
- (b) 4
- (c) 1/2
- (d) 1/4
- (e) 1

- 20. Which of the following limits is equal to the derivative of $f(x) = \frac{1}{\sqrt{x+1}}$ at x=3?
 - (a) $f'(3) = \lim_{h \to 3} \frac{\frac{1}{\sqrt{1+h}} \frac{1}{2}}{h}$ (b) $f'(3) = \lim_{h \to 3} \frac{\frac{1}{\sqrt{4+h}} \frac{1}{2}}{h}$ (c) $f'(3) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{1+x+h}} \frac{1}{2}}{h}$
- (d) $f'(3) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{1+h}} \frac{1}{2}}{h}$ (e) $f'(3) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{4+h}} \frac{1}{2}}{h}$

- 21. Which one of the following functions F(x) satisfies F'(x) = 1/x for x > 0?
 - (a) $F(x) = \int_{1}^{x} \frac{1}{t+1} dt 1$ (b) $F(x) = \frac{1}{x^2}$ (c) $F(x) = \int_{1}^{x} \frac{1}{t} dt$ (d) $F(x) = \int_{1}^{x} -\frac{1}{t^2} dt$

(e) $F(x) = -\frac{1}{x^2}$

- 22. The product of two positive numbers is 900. What is the minimum their sum can be?
 - (a) 30
- (b) 60
- (c) -30
- (d) -60
- (e) 0

- 23. Evaluate the integral $\int_{-1}^{0} (x+2)^3 dx$

 - (a) $\frac{1}{4}$ (b) $\frac{15}{4}$ (c) 7 (d) $\frac{7}{3}$

- 24. A balloon is rising vertically from a point A. It has constant speed of 5 m/sec. A girl is watching from a position exactly 80 m from A. How fast is the distance between the girl and the balloon increasing when the balloon is 60 m high?
 - (a) $11\frac{m}{s}$ (b) $5\frac{m}{s}$ (c) $9\frac{m}{s}$ (d) $3\frac{m}{s}$ (e) $7\frac{m}{s}$

- 25. On what intervals is $f(x) = \frac{1}{4x-7}$ concave up?

- (a) $\left(-\infty, \frac{7}{4}\right)$ (b) $\left(\frac{7}{4}, \infty\right)$ (c) $\left(-\infty, \infty\right)$ (d) $\left(-\infty, \frac{7}{4}\right) \cup \left(\frac{7}{4}, \infty\right)$ (e) $\left(0, \infty\right)$

A CT PIOTI T COTOT	V	ersion	1	color	:
--------------------	---	--------	---	-------	---

Math 119 Calculus, Final

December 15, 2000

This Examination contains 25 problems, worth a total of 150 points, on 11 sheets of paper including the front cover. Each Problem is worth 6 points. Please cross \times the correct answers for the multiple choice questions. Books and notes are not allowed. You may use your calculator.

	Name:										
	Prof:										
1.	a	b	С	•	e	16.	a	b	c	d	•
2.	a	b	С	d	•	17.	a	•	c	d	e
3.	•	b	С	d	е	18.	a	•	c	d	е
4.	a	b	С	•	e	19.	\mathbf{a}	b	c	•	е
5.	•	b	С	d	е	20.	a	b	c	d	•
6.	a	b	С	d	•	21.	a	b	•	d	е
7.	a	b	С	•	е	22.	a	•	c	d	е
8.	a	b	•	d	е	23.	a	•	c	d	е
9.	a	•	С	d	е	24.	a	b	с	•	е
10.	a	b	•	d	е	25.	a	•	с	d	е
11.	•	b	С	d	е						
12.	•	b	С	d	е						
13.	a	b	С	d	•			Total	-		
14.	a	b	•	d	e						
15.	a	•	С	d	e						

Math 119 Calculus, Final

December 15, 2000

This Examination contains 25 problems, worth a total of 150 points, on 11 sheets of paper including the front cover. Each Problem is worth 6 points. Please cross \times the correct answers for the multiple choice questions. Books and notes are not allowed. You may use your calculator.

	Name	:									
	Prof:										
1.	a	b	c	d	e	16.	a	b	c	d	e
2.	a	b	С	d	е	17.	a	b	с	d	е
3.	a	b	С	d	е	18.	a	b	С	d	e
4.	a	b	С	d	e	19.	a	b	с	d	e
5.	a	b	С	d	e	20.	a	b	С	d	е
6.	a	b	С	d	e	21.	a	b	С	d	е
7.	a	b	С	d	e	22.	a	b	с	d	е
8.	a	b	с	d	e	23.	a	b	С	d	e
9.	a	b	С	d	e	24.	a	b	с	d	е
10.	a	b	С	d	e	25.	a	b	С	d	е
11.	a	b	С	d	е						
12.	a	b	С	d	е						
13.	a	b	С	d	е		-	Total			
14.	a	b	С	d	e						
15.	a	b	С	d	е						

Sign	your	name:		

- 1. Let f(x) be a differentiable function of x. Which of the following expressions is the derivative of the function $g(x) = \frac{f(x)}{x^2}$?
 - (a) $2xf(x) + \frac{f'(x)}{x^3}$ (b) $2xf(x) \frac{f'(x)}{x^3}$ (c) $-2x^{-3}f^{'}(x) + x^{-2}f(x)$ (d) $\frac{x^2f'(x) 2xf(x)}{x^4}$
 - (e) $\frac{2xf(x) x^2f'(x)}{x^4}$

- 2. Assume $x \in \left[0, \frac{\pi}{2}\right]$. If $\sin x = \frac{3}{5}$ then $\tan x =$
 - (a) $\frac{4}{5}$ (b) $\frac{5}{3}$ (c) $\frac{4}{3}$ (d) $\frac{3}{4}$

- 3. Suppose that $f = g \circ h + h \circ g$, g(0) = 1, h(0) = 2, g'(0) = 3, g'(2) = 5, h'(0) = 6, h'(1) = 7 then f'(0) =
 - (a) 21
- (b) 31
- (c) 51
- (d) 11
- (e) 41

4. Which of the following quantities is equal to

$$\lim_{h\to 0}\frac{(2+h)^3-8}{h}$$

- (a) 1
- (b) 0 (c) $f'(h), f(x) = x^2$ (d) $f'(2), f(x) = x^3$ (e) $3h^2$

- 5. The volume V of a cube is increasing at a rate of $300 \mathrm{cm}^3$ per minute. How fast is the length L of each side increasing where L=10 cm ?
 - (a) 1cm/min
- (b) 100cm/min
- (c) 10cm/min
- (d) 3cm/min
- (e) 30 cm/min

6. Compute the indefinite integral

$$\int \frac{2x}{(x^2+1)^5} dx =$$

(a)
$$-\frac{1}{4(x^2+1)^4} + C$$

(b)
$$-\frac{(x^2+1)^4}{4}+C$$

(c)
$$\frac{1}{x^4} + C$$

(a)
$$-\frac{1}{4(x^2+1)^4} + C$$
 (b) $-\frac{(x^2+1)^4}{4} + C$ (c) $\frac{1}{x^4} + C$ (d) $\frac{1}{4(x^2+1)^4} + C$

(e)
$$\frac{(x^2+1)^4}{4} + C$$

7. The function $f(x) = \frac{x^2}{x^2 - 1}$ is increasing on the interval(s):

- $\text{(a)} \quad (-1,1) \qquad \text{(b)} \quad (0,1) \cup (1,\infty) \qquad \text{(c)} \quad (-\infty,0) \qquad \text{(d)} \quad (-1,0) \cup (0,1) \qquad \text{(e)} \quad (-\infty,-1) \cup (-1,0) = (-\infty,-1) \cup (-1,0) = (-\infty,-1) \cup (-1,0) = (-\infty,-1) \cup (-1,0) = (-\infty,-1) \cup (-\infty,-1) = (-$

- 8. Which of the following is $\frac{f(x+h)-f(x)}{h}$ if $f(x)=x^2+7x$? Note that you are not being asked to compute the limit as $h\to 0$.

 - (a) $2xh + h^2$ (b) 2x + 7 + h (c) 2x + 7h
- (d) 2x + 7
- (e) 2x + 7x + h

9. Let

$$f(x) = (\sin(2x))^3.$$

Which of the following is f'(x)?

- (a) $3(\sin(2x))^2\cos(2x)$ (b) $(\sin(2x))^2$ (c) $-6(\sin(2x))^2\cos(2x)$ (d) $3\sin(x)\cos(x)$

(e) $6(\sin(2x))^2\cos(2x)$

10. Which of the following equals

$$\int (\cos(x) + 5)^3 \sin(x) dx ?$$

- (a) $-3(\cos(x)+5)^2$ (b) $-\frac{(\cos(x)+5)^4}{4}+C$ (c) $-\frac{(\cos(x)+5)^4}{5}$ (d) $\frac{(\cos(x)+5)^4}{4}+C$

(e) $\frac{(\cos(x)+5)^4}{4}$

- 11. If $f(x) = x^2$, $0 \le x \le 6$, find the Riemann sum with n = 3 taking the sample points to be Midpoints.
 - (a) 9
- (b) 18
- (c) 70
- (d) 74
- (e) 35

- 12. Evaluate the integral $\int_0^{2\pi} (\sin x \cos x) \, dx$. The integral is equal to
 - (a) -1
- (b) -2
- (c) 0
- (d) 1
- (e) 2

- 13. Find the area enclosed by the curves y=x and $y=x^3$, between x=0 and x=1 .

 - (a) $\frac{3}{4}$ (b) $-\frac{1}{4}$ (c) $\frac{1}{4}$ (d) $\frac{1}{2}$
- (e) 1

- 14. A particle is moving in a straight line with position function $s(t) = \frac{t^3}{6}$. What is the average velocity over the time period [1,3].
 - (a) 13
- (b) $\frac{13}{6}$ (c) $\frac{13}{3}$ (d) 4
- (e) $\frac{9}{2}$

- 15. Find the equation of the tangent line to the curve $x^2 + y^2 = 169$ at the point (12,5).
 - (a) $y = \frac{-5}{12}x$ (b) y = 2.4x + 23.8 (c) y = -2.4x + 33.8 (d) $y = \frac{5}{12}x$ (e) y = -2x + 13

- 16. Find horizontal and vertical asymptotes to $f(x) = \frac{1}{x} + \frac{1}{x+1}$.
 - (a) vertical asymptotes at x = 0, horizontal asymptotes at y = 0
 - (b) vertical asymptotes at x = 0 and x = -1, horizontal asymptotes at y = 0
 - vertical asymptotes at x = 0 and x = 1, horizontal asymptotes at ∞
 - vertical asymptotes at x = 0 and x = -1, horizontal asymptotes at y = 1
 - vertical asymptotes at x = 0, horizontal asymptotes at y = -1

- 17. Evaluate the integral $\int_0^1 \sqrt[3]{x}(x-1)dx$.
 - (a) $\frac{-9}{28}$ (b) -6 (c) $\frac{11}{28}$

- 18. Evaluate the integral $\int (1-x)\sqrt{2x-x^2}dx$.

 - (a) $(2-x)^{\frac{3}{2}} + C$ (b) $\frac{1}{3}(2x-x^2)^{\frac{3}{2}} + C$ (c) $(2x-x^2)^{-\frac{1}{2}} + C$ (d) $-(2x-x^2)^{-\frac{1}{2}} + C$

(e) $(2x - x^2)^{\frac{3}{2}} + C$

19. Which of the following numbers is equal to the value of the limit

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$$

- (a) 1/4
- (b) 1/2
- (c) 2
- (d) 1
- (e) 4

- 20. Which of the following limits is equal to the derivative of $f(x) = \frac{1}{\sqrt{x+1}}$ at x=3?
 - (a) $f'(3) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{1+x+h}} \frac{1}{2}}{h}$ (b) $f'(3) = \lim_{h \to 3} \frac{\frac{1}{\sqrt{1+h}} \frac{1}{2}}{h}$ (c) $f'(3) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{1+h}} \frac{1}{2}}{h}$
- (d) $f'(3) = \lim_{h \to 3} \frac{\frac{1}{\sqrt{4+h}} \frac{1}{2}}{h}$ (e) $f'(3) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{4+h}} \frac{1}{2}}{h}$

- 21. Which one of the following functions F(x) satisfies F'(x) = 1/x for x > 0?
 - (a) $F(x) = \int_{1}^{x} \frac{1}{t+1} dt 1$ (b) $F(x) = -\frac{1}{x^2}$ (c) $F(x) = \frac{1}{x^2}$ (d) $F(x) = \int_{1}^{x} -\frac{1}{t^2} dt$

(e) $F(x) = \int_1^x \frac{1}{t} dt$

- 22. The product of two positive numbers is 900. What is the minimum their sum can be?
 - (a) 0
- (b) -30
- (c) 60
- (d) 30
- -60

- 23. Evaluate the integral $\int_{-1}^{0} (x+2)^3 dx$

 - (a) $\frac{1}{4}$ (b) $\frac{15}{16}$ (c) 7 (d) $\frac{15}{4}$

- 24. A balloon is rising vertically from a point A. It has constant speed of 5m/sec. A girl is watching from a position exactly 80m from A. How fast is the distance between the girl and the balloon increasing when the balloon is 60m high?

- (a) $5\frac{m}{s}$ (b) $3\frac{m}{s}$ (c) $9\frac{m}{s}$ (d) $11\frac{m}{s}$ (e) $7\frac{m}{s}$

- 25. On what intervals is $f(x) = \frac{1}{4x-7}$ concave up?

 - $\text{(a)}\quad \left(-\infty,\frac{7}{4}\right) \qquad \text{(b)}\quad \left(-\infty,\frac{7}{4}\right) \cup \left(\frac{7}{4},\infty\right) \qquad \text{(c)}\quad \left(-\infty,\infty\right) \qquad \text{(d)}\quad \left(0,\infty\right) \qquad \text{(e)}\quad \left(\frac{7}{4},\infty\right)$

Version	2	co	lor	:

Math 119 Calculus, Final

December 15, 2000

This Examination contains 25 problems, worth a total of 150 points, on 11 sheets of paper including the front cover. Each Problem is worth 6 points. Please cross \times the correct answers for the multiple choice questions. Books and notes are not allowed. You may use your calculator.

-	Name	:										
	Prof:											
1.	a	b	с	•	e	16.	a	•	c	d	е	
2.	a	b	С	•	e	17.	•	b	С	d	е	Ì
3.	a	b	•	d	e	18.	a	•	С	d	е	Ì
4.	a	b	С	•	е	19.	•	b	С	d	е	
5.	•	b	С	d	e	20.	a	b	c	d	•	
6.	•	b	С	d	e	21.	a	b	С	d	•	
7.	a	b	c	d	•	22.	a	b	•	d	е	
8.	a	•	С	d	e	23.	a	b	С	•	е	
9.	a	b	с	d	•	24.	a	•	С	d	е	
10.	a	•	с	d	e	25.	a	b	С	d	•	l
11.	a	b	•	d	e							
12.	a	b	•	d	e							
13.	a	b	•	d	e		-	Total (
14.	a	•	С	d	e							
15.	a	b	•	d	e							

- 1. Let f(x) be a differentiable function of x. Which of the following expressions is the derivative of the function $g(x) = \frac{f(x)}{x^2}$?
 - (a) $-2x^{-3}f^{'}(x) + x^{-2}f(x)$ (b) $\frac{x^{2}f'(x) 2xf(x)}{x^{4}}$ (c) $\frac{2xf(x) x^{2}f'(x)}{x^{4}}$ (d) $2xf(x) + \frac{f'(x)}{x^{3}}$
 - (e) $2xf(x) \frac{f'(x)}{x^3}$

- 2. Assume $x \in \left[0, \frac{\pi}{2}\right]$. If $\sin x = \frac{3}{5}$ then $\tan x =$
 - (a) $\frac{3}{4}$ (b) $\frac{5}{4}$ (c) $\frac{4}{5}$ (d) $\frac{4}{3}$

- 3. Suppose that $f = g \circ h + h \circ g$, g(0) = 1, h(0) = 2, g'(0) = 3, g'(2) = 5, h'(0) = 6, h'(1) = 7 then f'(0) =
 - (a) 51
- (b) 31
- (c) 21
- (d) 41
- (e) 11

4. Which of the following quantities is equal to

$$\lim_{h\to 0}\frac{(2+h)^3-8}{h}$$

- (a) 1 (b) $f'(2), f(x) = x^3$ (c) 0 (d) $3h^2$ (e) $f'(h), f(x) = x^2$

- 5. The volume V of a cube is increasing at a rate of $300 \mathrm{cm}^3$ per minute. How fast is the length L of each side increasing where L=10 cm ?
 - (a) 3cm/min
- (b) 30cm/min
- (c) 10cm/min
- (d) 1cm/min
- (e) 100cm/min

$$\int \frac{2x}{(x^2+1)^5} dx =$$

(a)
$$\frac{(x^2+1)^4}{4} + C$$

(b)
$$\frac{1}{x^4} + C$$

(a)
$$\frac{(x^2+1)^4}{4} + C$$
 (b) $\frac{1}{x^4} + C$ (c) $-\frac{1}{4(x^2+1)^4} + C$ (d) $\frac{1}{4(x^2+1)^4} + C$

(d)
$$\frac{1}{4(x^2+1)^4} + C$$

(e)
$$-\frac{(x^2+1)^4}{4} + C$$

7. The function
$$f(x) = \frac{x^2}{x^2 - 1}$$
 is increasing on the interval(s):

(a)
$$(0,1) \cup (1,\infty)$$

$$\text{(a)} \quad (0,1) \cup (1,\infty) \qquad \text{(b)} \quad (-\infty,-1) \cup (-1,0) \qquad \text{(c)} \quad (-1,1) \qquad \text{(d)} \quad (-1,0) \cup (0,1) \qquad \text{(e)} \quad (-\infty,0)$$

(c)
$$(-1, 1)$$

(d)
$$(-1,0) \cup (0,1)$$

(e)
$$(-\infty, 0)$$

- 8. Which of the following is $\frac{f(x+h)-f(x)}{h}$ if $f(x)=x^2+7x$? Note that you are not being asked to compute the limit as $h\to 0$.

 - (a) $2xh + h^2$ (b) 2x + 7x + h (c) 2x + 7 + h
- (d) 2x + 7
- (e) 2x + 7h

9. Let

$$f(x) = (\sin(2x))^3.$$

Which of the following is f'(x)?

- (a) $6(\sin(2x))^2\cos(2x)$ (b) $(\sin(2x))^2$ (c) $3(\sin(2x))^2\cos(2x)$ (d) $-6(\sin(2x))^2\cos(2x)$

(e) $3\sin(x)\cos(x)$

10. Which of the following equals

$$\int (\cos(x) + 5)^3 \sin(x) dx ?$$

- (a) $-\frac{(\cos(x)+5)^4}{5}$ (b) $-3(\cos(x)+5)^2$ (c) $\frac{(\cos(x)+5)^4}{4}+C$ (d) $\frac{(\cos(x)+5)^4}{4}$

(e) $-\frac{(\cos(x)+5)^4}{4}+C$

- 11. If $f(x) = x^2$, $0 \le x \le 6$, find the Riemann sum with n = 3 taking the sample points to be Midpoints.
 - (a) 35
- (b) 74
- (c) 9
- (d) 70
- (e) 18

- 12. Evaluate the integral $\int_0^{2\pi} (\sin x \cos x) \, dx$. The integral is equal to
 - (a) 1
- (b) 0
- (c) 2
- (d) -2
- (e) -1

- 13. Find the area enclosed by the curves y=x and $y=x^3$, between x=0 and x=1 .
 - (a) 1
- (b) $-\frac{1}{4}$ (c) $\frac{3}{4}$ (d) $\frac{1}{2}$ (e) $\frac{1}{4}$

- 14. A particle is moving in a straight line with position function $s(t) = \frac{t^3}{6}$. What is the average velocity over the time period [1,3].
 - (a) $\frac{13}{3}$ (b) $\frac{13}{6}$ (c) $\frac{9}{2}$ (d) 13

- (e) 4

- 15. Find the equation of the tangent line to the curve $x^2 + y^2 = 169$ at the point (12,5).
- (a) y = -2x + 13 (b) y = 2.4x + 23.8 (c) y = -2.4x + 33.8 (d) $y = \frac{-5}{12}x$ (e) $y = \frac{5}{12}x$

- 16. Find horizontal and vertical asymptotes to $f(x) = \frac{1}{x} + \frac{1}{x+1}$.
 - (a) vertical asymptotes at x = 0 and x = 1, horizontal asymptotes at ∞
 - (b) vertical asymptotes at x = 0, horizontal asymptotes at y = -1
 - vertical asymptotes at x = 0 and x = -1, horizontal asymptotes at y = 1
 - vertical asymptotes at x = 0 and x = -1, horizontal asymptotes at y = 0
 - vertical asymptotes at x = 0, horizontal asymptotes at y = 0

- 17. Evaluate the integral $\int_0^1 \sqrt[3]{x}(x-1)dx$.
 - (a) $\frac{-9}{28}$ (b) -6 (c) $\frac{11}{28}$

- 18. Evaluate the integral $\int (1-x)\sqrt{2x-x^2}dx$.
- (a) $(2-x)^{\frac{3}{2}} + C$ (b) $-(2x-x^2)^{-\frac{1}{2}} + C$ (c) $\frac{1}{3}(2x-x^2)^{\frac{3}{2}} + C$ (d) $(2x-x^2)^{-\frac{1}{2}} + C$

(e) $(2x - x^2)^{\frac{3}{2}} + C$

19. Which of the following numbers is equal to the value of the limit

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$$

- (a) 2
- (b) 1/2
- (c) 4
- (d) 1/4
- (e) 1

- 20. Which of the following limits is equal to the derivative of $f(x) = \frac{1}{\sqrt{x+1}}$ at x=3?

 - (a) $f'(3) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{1+h}} \frac{1}{2}}{h}$ (b) $f'(3) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{1+x+h}} \frac{1}{2}}{h}$ (c) $f'(3) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{4+h}} \frac{1}{2}}{h}$
 - (d) $f'(3) = \lim_{h \to 3} \frac{\frac{1}{\sqrt{1+h}} \frac{1}{2}}{h}$ (e) $f'(3) = \lim_{h \to 3} \frac{\frac{1}{\sqrt{4+h}} \frac{1}{2}}{h}$

- 21. Which one of the following functions F(x) satisfies F'(x) = 1/x for x > 0?
- (a) $F(x) = -\frac{1}{x^2}$ (b) $F(x) = \int_1^x \frac{1}{t} dt$ (c) $F(x) = \int_1^x -\frac{1}{t^2} dt$ (d) $F(x) = \frac{1}{x^2}$

(e) $F(x) = \int_{1}^{x} \frac{1}{t+1} dt - 1$

- 22. The product of two positive numbers is 900. What is the minimum their sum can be?
 - (a) -60
- (b) 30
- (c) 0
- (d) -30
- (e) 60

- 23. Evaluate the integral $\int_{-1}^{0} (x+2)^3 dx$
 - (a) $\frac{15}{4}$ (b) $\frac{1}{4}$ (c) 7
- (d) $\frac{7}{3}$

- 24. A balloon is rising vertically from a point A. It has constant speed of 5 m/sec. A girl is watching from a position exactly 80 m from A. How fast is the distance between the girl and the balloon increasing when the balloon is 60 m high?
 - (a) $11\frac{m}{s}$ (b) $7\frac{m}{s}$ (c) $5\frac{m}{s}$ (d) $9\frac{m}{s}$ (e) $3\frac{m}{s}$

- 25. On what intervals is $f(x) = \frac{1}{4x-7}$ concave up?
- $\text{(a)} \quad (-\infty,\infty) \qquad \text{(b)} \quad \left(\frac{7}{4},\infty\right) \qquad \text{(c)} \quad \left(-\infty,\frac{7}{4}\right) \cup \left(\frac{7}{4},\infty\right) \qquad \text{(d)} \quad (0,\infty) \qquad \text{(e)} \quad \left(-\infty,\frac{7}{4}\right) = \left(-\infty,\frac{7}{4$

Versio	n 3	colo	r:

Math 119 Calculus, Final

December 15, 2000

This Examination contains 25 problems, worth a total of 150 points, on 11 sheets of paper including the front cover. Each Problem is worth 6 points. Please cross \times the correct answers for the multiple choice questions. Books and notes are not allowed. You may use your calculator.

	Name	:									
•	Prof:										
1.	a	•	С	d	e	16.	a	b	С	•	е
2.	•	b	С	d	e	17.	•	b	с	d	е
3.	•	b	С	d	e	18.	a	b	•	d	e
4.	a	•	С	d	e	19.	a	b	с	•	e
5.	a	b	С	•	e	20.	a	b	•	d	е
6.	a	b	•	d	e	21.	a	•	с	d	е
7.	a	•	С	d	e	22.	a	b	с	d	•
8.	a	b	•	d	e	23.	•	b	С	d	е
9.	•	b	С	d	e	24.	a	b	с	d	•
10.	a	b	С	d	•	25.	a	•	с	d	e
11.	a	b	С	•	e						
12.	a	•	С	d	e						
13.	a	b	С	d	•		,	Total			
14.	a	•	С	d	e						
15.	a	b	•	d	е						