Math 120: Calculus	Name:	
Exam II	Tutorial Instructor:	
March 28. 1995	Tutorial Section:	

Calculators *are* allowed on this exam. Hand in this answer page only. Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 19 multiple choice questions, worth 5 points each. An additional 5 points will be given for your correct tutorial section number.

You are taking this exam under the honor code.

Let $f(x) = x^{(x^2)}$. What is f'(x)? $x^{(x^2)} [x + 2x \ln x] x^{2x} [2 + 2 \ln x] x^2 \cdot x^{(x^2-1)} x^{(x^2)} \cdot 2x x^{(x^2)} [2 + 2 \ln x]$

Let
$$f(x) = x^x$$
. What is $f'(x)$? $x^x [1 + \ln x] x \cdot x^{x-1} x^x \cdot \left[1 + \frac{1}{x}\right] x^x \cdot \frac{1}{x} xe^x + e^x$

Fred invests \$5000 in an account at an annual interest rate of 10%, compounded continuously. How much will he have (in dollars) in the account after 20 years? $5000e^2$ $500e^{20}$ 10,000 15,000 $5000(1 + .10)^{20}$

A certain radioactive substance is being studied. It is observed that after 100 days, 75% of the original amount remains. What is the half-life of that radioactive substance (in days)? $\frac{100 \ln(.5)}{\ln(.75)} \approx 241\ 200\ \frac{200 \ln(.75)}{\ln(.5)} \approx 83\ 1000 \cdot |\ln(.75)| \approx 288\ 100 \cdot (\ln(.75) - \ln(.5)) \approx 405$

A bacteria culture starts with 600 bacteria and after 4 hours there are 6000 bacteria. Find an expression for the number of bacteria after t hours. $600 \cdot 10^{t/4} \ 600 \cdot e^{t/4} \ (0.6) \cdot 10^t \ 600 \cdot 10^t \ 600e^t$

Find the following antiderivative: $\int \frac{e^x}{1 - e^{2x}} dx.$ (Hint: Find a substitution, then use the fact that $\frac{1}{1 - u^2} = \frac{1/2}{1 - u} + \frac{1/2}{1 + u}$) $\frac{1}{2} \ln \left| \frac{1 + e^x}{1 - e^x} \right| + C \frac{1}{2} \ln \left| 1 - e^{2x} \right| + C \frac{1}{2} \ln \left| \frac{1 - e^x}{1 + e^x} \right| + C \frac{e^x}{1 + e^x} + C - \ln \left| 1 - e^{2x} \right| + C$

Evaluate the following definite integral: $\int_{0}^{\pi} x \sin x \, dx \, \pi \, 4\pi - 2 \, 2\pi - 2 \, 4\pi - 4 \, \pi - 2$ Evaluate the following definite integral: $\int_{0}^{\frac{\pi}{2}} \sin^2 x \cos x \, dx \, \frac{1}{3} \, \frac{\pi^2}{4} \, \frac{1}{3} \cdot \frac{\pi^3}{8} \, 0 - \frac{1}{3}$ In the partial fraction decomposition

$$\frac{x^2+1}{x^3-x} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1}$$

find the value of A. (You don't have to find the values of B or C.) $-1 \ 1 \ 1/2 \ -1/2 \ 2$

Use long division to divide $\frac{x^3 + 2x^2 + 2x + 1}{x^2 + 1} x + 2 + \frac{x - 1}{x^2 + 1} x + 1 + \frac{2x}{x^2 + 1} x + 1 + \frac{x + 1}{x^2 + 1} x + 2 + \frac{2x + 1}{x^2 + 1} x + 2 + \frac{3x - 1}{x^2 + 1}$

It is a fact, which you don't have to verify, that

$$\frac{x^2 + 1}{x(2x - 1)^2} = \frac{1}{x} - \frac{3/2}{2x - 1} + \frac{5/2}{(2x - 1)^2}$$

Using this, find $\int \frac{x^2 + 1}{x(2x - 1)^2} dx \ln|x| - \frac{3}{4} \ln|2x - 1| - \frac{5/4}{2x - 1} + C \ln|x| - 3\ln|2x - 1| - \frac{5}{2x - 1} + C \ln|x| + 3\ln|2x - 1| + \frac{5}{2x - 1} + C \ln|x| + \frac{3}{4} \ln|2x - 1| + \frac{5/4}{2x - 1} + C \ln|x| - \frac{3}{4} \ln|2x - 1| - \frac{5}{4} \ln((2x - 1)^2) + C$

Evaluate the following definite integral: $\int_{0}^{\pi} \cos^{2} 2x \, dx \, \frac{\pi}{2} \pi \, 0 \, \frac{\pi}{4} \, 2\pi$ Evaluate the following definite integral: $\int_{0}^{\frac{\pi}{2}} \cos^{3} x \, dx \, 2/3 \, \frac{\pi}{2} - \frac{\pi^{3}}{24} \, \frac{\pi}{2} \, 0 \, 1$ Evaluate the following definite integral: $\int_{1}^{2} x \ln x \, dx.$ (Hint: $\ln 1 = 0.$) $2 \ln 2 - \frac{3}{4}$ $2 \ln 2 - \frac{3}{4} - \frac{e}{2} \, 2 \ln 2 \, 2 \ln 2 - 1 \, 2 \ln 2 - e - 1$ Evaluate the following definite integral: $\int_{1}^{1} \frac{dx}{2} \pi \, dx = \frac{\pi}{6} \, \frac{\pi}{3} \, \frac{\pi}{4} \, \frac{\pi}{4} \, \frac{\pi}{6} \, \frac{\pi}{4} \, \frac{\pi}{6} \, \frac{\pi}{4} \, \frac{\pi}{4} \, \frac{\pi}{6} \, \frac{$

Evaluate the following definite integral: $\int_0^1 \frac{dx}{\sqrt{4-x^2}} \pi/6 \pi/3 \pi/4 \pi 0$ In order to integrate

$$\int \frac{x^2 - 10}{x(x+1)(3x-1)^2} dx$$

by partial fractions, which of the following is the correct decomposition to set it up? $\frac{x^2 - 10}{x(x+1)(3x-1)^2} = \frac{A}{x} + \frac{B}{x+1} + \frac{C_1}{3x-1} + \frac{C_2}{(3x-1)^2} \frac{1}{x(x+1)(3x-1)^2} = \frac{A}{x} + \frac{B}{x+1} + \frac{C_1}{(3x-1)^2} \frac{1}{x(x+1)(3x-1)^2} = \frac{A}{x} + \frac{B}{x+1} + \frac{C_1}{3x-1} + \frac{C_2}{3x-1} \frac{x^2 - 10}{x(x+1)(3x-1)^2} = \frac{A}{x} + \frac{B}{x+1} + \frac{C_1}{3x-1} + \frac{C_2}{3x-1} \frac{x^2 - 10}{x(x+1)(3x-1)^2} = \frac{A}{x} + \frac{B}{x+1} + \frac{B}{x+1} + \frac{C_1}{(3x-1)^2} \frac{1}{x(x+1)(3x-1)^2} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{(3x-1)^2}$ Suppose that *u* is some quantity changing over time *t* and that the rate at which it

Suppose that y is some quantity changing over time t, and that the rate at which it changes

is proportional to the quantity present at any given time. In other words, suppose that $\frac{dy}{dt} = ky$. What is the solution for y? $y = Ce^{kt}$, where C = y(0) $y = \frac{k}{2}y^2$ $y = e^{kt} + C$, where C = y(0) $y = C_1 d^{kt} + C_2$, where $C_1 = y(0)$ and C_2 is an arbitrary constant $y = \frac{k}{2}t^2$ Evaluate the following definite integral: $\int_0^3 xe^{x^2} dx \frac{1}{2}(e^9 - 1) \frac{1}{2}(e^6 - 1) \frac{1}{2}e^9 \frac{1}{2}e^6 e^6$ In order to evaluate the following definite integral

$$\int_4^8 \frac{dx}{x\sqrt{x^2+4}}$$

what substitution should you make as a first step? $x = 2 \tan \theta \ x = 2 \sin \theta \ u = x^2 + 4$ $u = \sqrt{x^2 + 4} \ x = u$