\qquad

Exam III
April 25, 1995

Tutorial Instructor:
Tutorial Section:

Calculators are not allowed on this exam. Hand in this answer page only. Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 19 multiple choice questions, worth 5 points each. An additional 5 points will be given for your correct tutorial section number.

You are taking this exam under the honor code.
What is the sixth degree Taylor polynomial $P_{6}(x)$ for $f(x)=\sin x$? (Hint: You can use the fact that $P_{2 n+1}(x)=\sum_{k=0}^{n} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}$ and $P_{2 n+2}(x)=P_{2 n+1}(x)$, or else just do it from scratch.) $x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!} 1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!} x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\frac{x^{11}}{11!}+\frac{x^{13}}{13!}$ $-x+\frac{x^{3}}{3!}-\frac{x^{5}}{5!}$

Find the third degree Taylor polynomial for the function $f(x)=e^{-x} .1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}$ $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}-1+x-\frac{x^{2}}{2!}+\frac{x^{3}}{3!}-1-x-\frac{x^{2}}{2!}-\frac{x^{3}}{3!}-1-x-x^{2}-x^{3}$

Find the $k^{\text {th }}$-degree Taylor coefficient of the function $f(x)=\frac{1}{x+1}(-1)^{k} 1 \frac{1}{k!} \frac{(-1)^{k}}{k!}$ -1

Which of the following is equal to the binomial coefficient $\binom{8}{3}$? $56281128-28$
A certain kind of die has four sides, labelled 1 to 4 . When the die is rolled, each side has a probability of $1 / 4$ that it will appear on the bottom. If the die is rolled 5 times, what is the probability that the side labelled " 3 " appears on the bottom in exactly two of the five rolls? $10 \cdot\left(\frac{1}{4}\right)^{2} \cdot\left(\frac{3}{4}\right)^{3} 5 \cdot\left(\frac{1}{4}\right)^{3} \cdot\left(\frac{3}{4}\right)^{2} 10 \cdot\left(\frac{1}{3}\right)^{2} \cdot\left(\frac{2}{3}\right)^{3} 10 \cdot\left(\frac{1}{4}\right)^{3} \cdot\left(\frac{3}{4}\right)^{2}$ $\left(\frac{2}{5}\right)\left(\frac{1}{4}\right)$

Recall Simpson's rule:
$\int_{a}^{b} f(x) d x \approx \frac{b-a}{3 n}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$
Which of the following do you get by applying Simpson's rule with $n=4$ to the integral

$$
\begin{aligned}
& \int_{1}^{3} \frac{1}{x} d x \\
& \frac{1}{6} \cdot\left[1+\frac{8}{3}+1+\frac{8}{5}+\frac{1}{3}\right] \frac{1}{6} \cdot\left[1+\frac{2}{3}+\frac{1}{2}+\frac{2}{5}+\frac{1}{3}\right] \frac{1}{6} \cdot\left[1+\frac{3}{2}+2+\frac{5}{2}+3\right] \frac{1}{6} \cdot\left[1+\frac{12}{2}+4+\frac{20}{2}+3\right] \\
& \frac{1}{2} \cdot\left[1+\frac{4}{3}+1+\frac{4}{5}+\frac{1}{3}\right]
\end{aligned}
$$

Recall that associated to the trapezoid rule for approximating $\int_{a}^{b} f(x) d x$ is the error estimate

$$
\mid \text { error } \left\lvert\, \leq \frac{M(b-a)^{3}}{12 n^{2}}\right.
$$

where M is the maximum value of $\left|f^{\prime \prime}(x)\right|$ for $a \leq x \leq b$. Suppose you used the trapezoid rule with $n=4$ to estimate

$$
\int_{1}^{3} \frac{1}{x} d x
$$

What bound on the error is guaranteed by the error estimate formula? (Note that for this problem you don't need to remember what the trapezoid rule is; you just need the error estimate given above.) $\frac{1}{12} \frac{1}{24} \frac{1}{216} \frac{1}{324} 2$

Find the length of the curve $y=\frac{2}{3} x^{\frac{3}{2}}$ from $x=0$ to $x=3 . \frac{14}{3} \frac{2}{3} \frac{16}{3} \frac{9}{2} \frac{\sqrt{2}}{3}$
Three objects are placed on the x-axis. The first, having mass 5 , is placed at $x=1$. The second, having mass 8 , is placed at $x=2$. The third, having mass 3 , is placed at $x=3$. Where is the center of mass of the system?

At $x=\frac{15}{8}$ At $x=2$ At $x=\frac{15}{16}$ At $x=\frac{7}{4}$ At $x=\frac{21}{16}$
Four objects are placed in the (x, y)-plane. They all have the same mass. They are placed at the points $(1,2),(2,3),(0,4)$ and $(1,7)$. Where is the center of mass of the system? At the point $(1,4)$ It cannot be computed from the given information At the point $(1,6)$ At the point $\left(1, \frac{7}{2}\right)$ At the point $\left(\frac{3}{2}, \frac{7}{2}\right)$

A lamina (= region of the plane) has the shape of a right isosceles triangle with sides of length 4:

Which of the following represents the x-coordinate of the center of mass (i.e. the centroid) of the lamina? $\frac{1}{8} \int_{0}^{4}\left(4 x-x^{2}\right) d x \frac{1}{16} \int_{0}^{4}\left(4 x-x^{2}\right) d x \frac{1}{16} \int_{0}^{4}(4-x) d x \frac{1}{8} \int_{0}^{4}(4-x) d x$ $\frac{1}{8} \int_{0}^{4}(4-x)^{2} d x$

Set up, but do not evaluate, an integral for the length of the arc of the curve $y^{2}=$ $4 \sin x$ from the point $(0,0)$ to the point $\left(\frac{\pi}{2}, 2\right)$. (Note that the equation is $y^{2}=4 \sin x$, not $y=4 \sin x$.) $\int_{0}^{\frac{\pi}{2}} \sqrt{1+\frac{\cos ^{2} x}{\sin x}} d x \int_{0}^{\frac{\pi}{2}} \sqrt{1+16 \cos ^{2} x} d x \int_{0}^{\sqrt{\frac{\pi}{2}}} \sqrt{1+16 \cos ^{2} x} d x$ $\int_{0}^{\frac{\pi}{2}} \sqrt{1+\frac{\cos x}{\sqrt{\sin x}}} d x \int_{0}^{\frac{\pi}{2}} \sqrt{1+\frac{1}{\sin x}} d x$

In the expansion of $(x+y)^{15}$, what is the coefficient of $x y^{14}$? 1514105191
A bloodbank has 10 units of type A^{+}blood available; but, unknown to them, 5 of the units are contaminated with serum hepatitis. Suppose that 2 units are chosen at random. What is the probability that both units chosen will be contaminated? $\frac{2}{9} \frac{1}{2} \frac{2}{5} \frac{1}{5} \frac{1}{9}$

Set up, but do not evaluate, an integral for the length of the curve $y=x^{2}, 3 \leq x \leq 5$. $\int_{3}^{5} \sqrt{1+4 x^{2}} d x \int_{3}^{5} \sqrt{1+2 x} d x \int_{3}^{5} \sqrt{1+x^{2}} d x \int_{9}^{25} \sqrt{1+4 x^{2}} d x \int_{9}^{25} \sqrt{1+2 x} d x$

Recall that for the trapezoid rule to approximate $\int_{a}^{b} f(x) d x$, the error estimate is

$$
\mid \text { error } \left\lvert\, \leq \frac{M(b-a)^{3}}{12 n^{2}}\right.
$$

where M is the maximum value of $\left|f^{\prime \prime}(x)\right|$ for $a \leq x \leq b$. Using this, how large do we have to choose n so that the trapezoid rule approximation to the integral

$$
\int_{1}^{3} 6 \ln x d x
$$

is accurate to within 10^{-4} ? (Note that for this problem you don't need to remember what the trapezoid rule is; you just need the error estimate given above. The numbers in this problem were chosen so that you do not need a calculator.) $n>200 n>100 n>50$ $n>10 n>5$

Which of the following is a row of Pascal's triangle? $1 \begin{array}{llllllll}6 & 6 & 15 & 20 & 15 & 6 & 1\end{array}$ $\begin{array}{llllllllllllllllllllll}1 & 6 & 10 & 15 & 10 & 6 & 1 & 1 & 6 & 20 & 35 & 20 & 6 & 1 & 1 & 6 & 15 & 15 & 6 & 1 & 1 & 6 \\ 10 & 10 & 6 & 1\end{array}$

A certain partial deck of cards contains 6 red cards and 4 black cards. Two cards are chosen at random. What is the probability that both cards are black? $\frac{6}{45} \quad \frac{6}{90} \quad \frac{16}{100} \quad \frac{6}{15} \quad \frac{4}{10}$

Let $f(x)=3 x^{5}-x^{2}+1$. Find the degree 4 Taylor polynomial $P_{4}(x)$ for $f(x)$. $P_{4}(x)=-x^{2}+1 P_{4}(x)=3 x^{5}-x^{2}+1 P_{4}(x)=1 P_{4}(x)=-x^{2} P_{4}(x)=x^{4}-x^{2}+1$

