Math 120: Calculus
Exam II
March 6, 1997

Name: \qquad
MWF Instructor: \qquad
Tutorial Section: \qquad
Calculators are not allowed. Hand in this answer page only. Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 20 multiple choice questions, worth 5 points each.

You are taking this exam under the honor code.
Find $\lim _{x \rightarrow 0} \frac{2^{x}+2 x-1}{x} \ln (2)+2-13 \frac{1}{\ln (2)}+2 \log _{2}(0)+2$
Find the slope of the tangent line to the graph of $y=x^{x}$ at $x=e$.
$2 e^{e} e \cdot e^{e-1} e^{e}(e+1) e^{e} e \cdot e^{e}$
Differentiate $g(t)=\sqrt{e^{t^{2}}+1}$
$\frac{t e^{t^{2}}}{\sqrt{e^{t^{2}}+1}} \frac{t}{\sqrt{e^{t^{2}}+1}} \frac{e^{t^{2}}}{\sqrt{e^{t^{2}}+1}} \frac{e^{t^{2}}}{2 \sqrt{e^{t^{2}}+1}} \frac{1}{2 \sqrt{e^{t^{2}}+1}}$
Differentiate $f(x)=\frac{e^{x}+1}{e^{x}-1}$
$\frac{-2 e^{x}}{\left(e^{x}-1\right)^{2}} 0 \frac{2 e^{x}}{\left(e^{x}-1\right)^{2}} \frac{2}{\left(e^{x}-1\right)^{2}} \frac{2 e^{2 x}}{\left(e^{x}-1\right)^{2}}$
On what interval(s) is the function $\frac{e^{x}}{x}$ decreasing?
only $(-\infty, 0)$ and $(0,1)$ only $(1, \infty)$ only $(0,1)$ only $(-\infty, 0)$ it is never decreasing
Solve for x : $\quad 2 \log _{5} x-\log _{5} 3=1$
$x=\sqrt{15} x=5^{3 / 2} x=\frac{15}{2} x=30 x=4$
Simplify $e^{t^{2}(\ln 3) / 4}$
$3^{t^{2} / 4}\left(\frac{t^{2}}{4}\right)^{3}\left(\frac{3 t^{2}}{4}\right) 3 \ln \left(\frac{t^{2}}{4}\right) 3 e^{t^{2} / 4}$
Suppose that A, B and C are numbers satisfying

$$
\log _{10}\left(\frac{A}{C}\right)=3.5 \quad \text { and } \quad \log _{10}\left(\frac{B}{C}\right)=2.1
$$

Find $\frac{A}{B}$.

$$
10^{1.4} \frac{3.5}{2.1} 10^{3.5 / 2.1} 1.410^{3.5}-10^{2.1}
$$

Find $\frac{\dot{d}}{d x} \ln \left(\sqrt{x^{2}+1}\right)$
$\frac{x}{x^{2}+1} \frac{2 x}{x^{2}+1} \frac{1}{\sqrt{x^{2}+1}} \frac{x}{2\left(x^{2}+1\right)} \frac{2 x}{\sqrt{x^{2}+1}}$
A bacteria culture grows at a rate proportional to its size. Suppose that the initial size is 8000 bacteria, and after 2 hours there are 12,000 bacteria. How many bacteria are there after 6 hours?

27,000 20,000 24,000 36,000 48,000
A certain radioactive substance is known to have a half-life of 10 years. If you have a certain initial amount of this substance, how many years will elapse before only $1 / 3$ of it remains? (The following answers are all in years.)
$\frac{10 \ln 3}{\ln 2} \frac{10 \ln 2}{\ln 3} 10(\ln 3-\ln 2) \frac{20}{3}$ It is impossible to tell without knowing the initial amount.

Fred plans to invest money into an account which pays an annual interest rate of 10%, compounded continuously. How much should he invest if he does not plan to make any further investments into this account, and he wants the balance after two years to be $\$ 20,000$?
$\frac{20,000}{e^{0.2}} 20,000 e^{0.2} 16,00016,200 \frac{40,000}{e^{0.1}}$
Suppose that $y(t)$ is a solution to the differential equation $\frac{d y}{d t}=5 y$, and suppose that $y(1)=100$. (Note that this is $y(1)$, not $y(0)$.) Find $y(t)$.
$100 e^{5(t-1)} 5 e^{100 t} 5 e^{100} \frac{e^{5 t}}{100} 100 e^{5}$
Evaluate $\int_{1}^{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2} d x$
$\frac{27}{2}+\ln 4 \frac{33}{2}+\ln 4 \frac{37}{2}+\ln 4 \frac{41}{2}+\ln 4 \frac{51}{2}+\ln 4$
Evaluate $\int_{0}^{1} 2^{x} d x$
$\frac{1}{\ln 2} \frac{2}{\ln 2} \ln 22 \ln 2 \frac{3}{\ln 2}$
Use logarithmic differentiation to find $\frac{d y}{d x}$ for $y=\frac{x^{5} \sqrt{x^{2}+1}}{\sin ^{4} x}$
$\frac{d y}{d x}=\frac{x^{5} \sqrt{x^{2}+1}}{\sin ^{4} x}\left[\frac{5}{x}+\frac{x}{x^{2}+1}-\frac{4 \cos x}{\sin x}\right] \frac{d y}{d x}=\frac{x^{5} \sqrt{x^{2}+1}}{\sin ^{4} x}\left[\frac{5}{x}+\frac{1}{2\left(x^{2}+1\right)}-\frac{4 \cos x}{\sin x}\right]$
$\frac{d y}{d x}=\frac{x^{5} \sqrt{x^{2}+1}}{\sin ^{4} x}\left[5 x^{4}+x\left(x^{2}+1\right)^{-1 / 2}-4 \sin ^{3} x \cos x\right] \frac{d y}{d x}=\frac{x^{5} \sqrt{x^{2}+1}}{\sin ^{4} x}\left[\frac{\left(5 x^{4}\right)\left[x\left(x^{2}+1\right)^{-1 / 2}\right]}{4 \sin ^{3} x \cos x}\right]$
$\frac{d y}{d x}=\frac{x^{5} \sqrt{x^{2}+1}}{\sin ^{4} x}\left[\frac{5}{x}+\frac{2}{x^{2}+1}+\frac{4 \cos x}{\sin x}\right]$
Find $\lim _{x \rightarrow 0^{+}} x \ln x$.
$01 e \infty-\infty$
Evaluate $\int \frac{x}{e^{x^{2}}} d x$.
$\frac{-1}{2 e^{x^{2}}}+C \frac{1}{2 e^{x^{2}}}+C \frac{-1}{e^{x^{2}}}+C \frac{1}{e^{x^{2}}}+C \frac{x^{2}}{2 e^{x^{3}}}+C$
Simplify: $\log _{\frac{1}{2}} 16$
$-44 \frac{1}{4} \frac{-1}{4} 8$
Find the slope of the tangent line to the curve $y=\log _{5} x$ at $x=2$.

$$
\frac{1}{2 \ln 5} 2 \ln 5 \frac{2}{\ln 5} \frac{\ln 5}{2} \ln 5
$$

